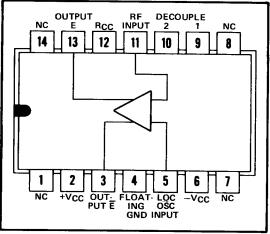
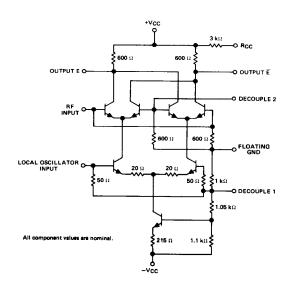
BULLETIN NO. DL-S 11430, OCTOBER 1979

### **FORMERLY SN56514, SN76514**


- Flat Response to 100 MHz
- Local Oscillator IF Isolation . . . 30 dB Typ
- Local Oscillator RF Isolation . . . 60 dB Typ
- RF-IF Isolation . . . 30 dB Typ
- Conversion Gain . . . 14 dB Typ
- Use with 12-V or ±6-V Power Supplies

#### description

The TL442M and TL442C are doubly balanced mixers that utilize two cross-coupled, differential transistor pairs driven by a third balanced pair. The circuit features a flat response over a wide band of frequencies. Operation from single or split power supplies is possible. Refer to typical application data.


The TL442M is characterized for operation over the full military temperature range of  $-55^{\circ}\text{C}$  to  $125^{\circ}\text{C}$ ; the TL442C is characterized for operation from  $0^{\circ}\text{C}$  to  $70^{\circ}\text{C}$ .

#### J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)



NC-No internal connection

#### schematic



Copyright © 1979 by Texas Instruments Incorporated

1079

# TEXAS INSTRUMENTS

INCORPORATED

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, V <sub>CC</sub> (see Note 1) |      |      |     |     |     |     |    |     |     |    |   |     |    |     |    |    |    |     |    |  |   |  |    |     |     |      | 18 V  |
|----------------------------------------------|------|------|-----|-----|-----|-----|----|-----|-----|----|---|-----|----|-----|----|----|----|-----|----|--|---|--|----|-----|-----|------|-------|
| Input voltage (see Notes 1 and 2)            |      |      |     |     |     | ٠   |    |     |     |    |   |     |    |     |    |    |    |     |    |  |   |  |    |     |     |      | 7 V   |
| Continuous output current (see Note          | 3)   |      |     |     |     |     |    |     |     |    |   |     |    |     |    |    |    |     |    |  |   |  |    |     |     | 1    | 10 mA |
| Continuous total power dissipation at        | t (o | r be | elo | w)  | 25  | °C  | fr | ee- | air | te | m | per | at | ure | (s | ee | No | ote | 4) |  |   |  |    |     |     | 50   | 00 mW |
| Operating free-air temperature range:        | TI   | _44  | 21  | 1 C | irc | uit | ts |     |     |    |   |     |    |     |    |    |    |     |    |  |   |  | -5 | 55° | c · | to   | 125°C |
|                                              | TI   | _44  | 20  | c   | irc | uit | s  |     |     |    |   |     |    |     |    |    |    |     |    |  |   |  |    | C   | )°C | c to | 70°C  |
| Storage temperature range                    |      |      |     |     |     |     |    |     |     |    |   |     |    |     |    |    |    |     |    |  | _ |  | -6 | i5° | 'n. | to   | 150°C |

#### recommended operating conditions

|                                                       | MIN | NOM M | AX UNIT   |
|-------------------------------------------------------|-----|-------|-----------|
| Supply voltage, VCC                                   |     | 12    | V         |
| Local oscillator input voltage (see Note 5)           |     | 250 3 | 00 mV rms |
| RF input voltage (see Note 5)                         |     | 10    | 30 mV rms |
| Operating free-air temperature range: TL442M Circuits | -55 | 1     | 25 °C     |
| TL442C Circuits                                       | 0   |       | 70 °C     |

## electrical characteristics at 25°C free-air temperature, V<sub>CC</sub> = 12 V

|       | PARAMETER                             | TEST | TEST CONDITIONS                          |     | TL442M | 1    | 7       | UNIT |      |    |
|-------|---------------------------------------|------|------------------------------------------|-----|--------|------|---------|------|------|----|
|       | FARAMETER                             |      | TEST CONDITIONS                          | MIN | TYP    | MAX  | MIN TYP |      | MAX  |    |
| Vο    | Quiescent output voltage              | 1    |                                          | 9.6 | 10.5   | 11.3 | 9.6     | 10.5 | 11.3 | V  |
| Icc   | Supply current                        | 1    |                                          | 5.5 | 7.4    | 10.9 | 5.5     | 7.4  | 10.9 | mA |
| GC    | Conversion gain (single-ended output) | 2    | fRF and fLO = 100 kHz<br>thru 40 MHz     | 11  | 14     | 17   | 11      | 14   | 17   | dB |
| LOIFI | Local oscillator to IF isolation      | 3    | f <sub>LO</sub> = 100 kHz<br>thru 40 MHz | 15  | 29†    |      |         | 29†  |      | dB |
| LORFI | Local oscillator to RF isolation      | 3    | f <sub>LO</sub> = 100 kHz<br>thru 40 MHz | 40  | 52†    |      |         | 52†  |      | dB |
| RFIFI | RF to IF isolation                    | 4    | fRF = 100 kHz<br>thru 40 MHz             | 15  | 28†    |      |         | 28†  |      | dB |

<sup>&</sup>lt;sup>†</sup>The typical values are at 40 MHz.

NOTES: 1. All d-c voltage values are with respect to -V<sub>CC</sub> terminal.

- 2. This rating applies to the local-oscillator input, RF input, and Decouple 2.
- 3. This value applies for both outputs simultaneously.
- 4. For operation above 25°C free-air temperature, refer to Dissipation Derating Table. In the J package, TL442M chips are alloy-mounted; TL442C chips are glass-mounted.
- 5. All signal voltages are with respect to the floating-ground terminal. Alternatively, the RF input may be applied differentially between the RF input terminal and Decouple 2.

#### DISSIPATION DERATING TABLE

| PACKAGE               | POWER  | DERATING   | ABOVE |
|-----------------------|--------|------------|-------|
| FACKAGE               | RATING | FACTOR     | TA    |
| J(Alloy-Mounted Chip) | 500 mW | 11.0 mW/°C | 105°C |
| J(Glass-Mounted Chip) | 500 mW | 8.2 mW/°C  | 89° C |
| N                     | 500 mW | 9.2 mW/°C  | 96° C |

Also see Dissipation Derating Curves, Section 2.

1079

## Texas Instruments

334

## PARAMETER MEASUREMENT INFORMATION

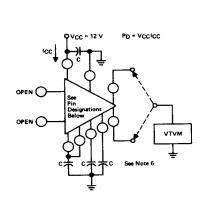



FIGURE 1-- $V_0$ ,  $I_{CC}$ , and  $P_D$ 

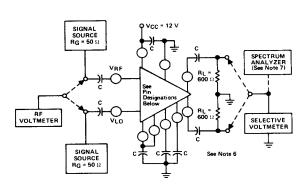



FIGURE 2-GC

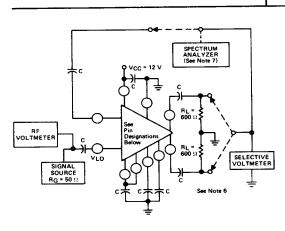



FIGURE 3-LOIFI and LORFI

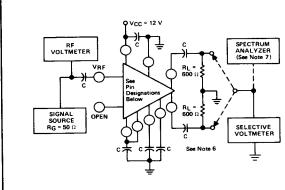
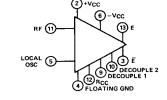
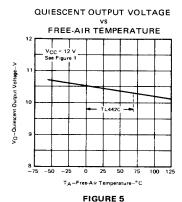



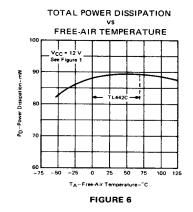

FIGURE 4-RFIFI

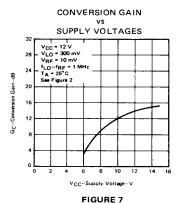
Pin Designations: For all test circuits appearing in this data sheet, terminal functions are defined by their relative positions as shown in the drawings in this block.

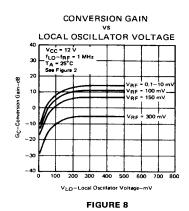


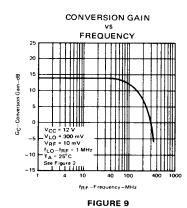
NOTES: 6. Capacitor C comprises the following capacitors in parallel: 1  $\mu$ F, 0.1  $\mu$ F, and 0.0015  $\mu$ F.

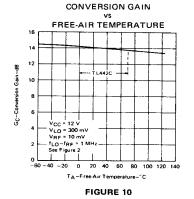

7. The spectrum analyzer is used for frequencies above the normal range of the selective voltmeter.


1079


## TEXAS INSTRUMENTS


INCORPORATED


#### **TYPICAL CHARACTERISTICS**














TEXAS INSTRUMENTS

#### **TYPICAL CHARACTERISTICS**

LOCAL OSCILLATOR TO IF ISOLATION

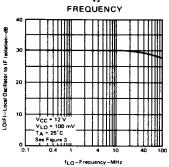



FIGURE 11

LOCAL OSCILLATOR TO IF ISOLATION

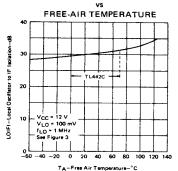



FIGURE 12

LOCAL OSCILLATOR TO RF ISOLATION

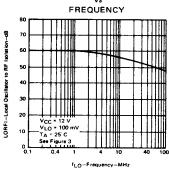
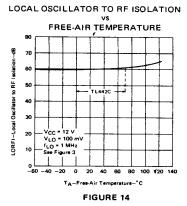




FIGURE 13



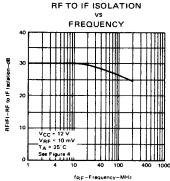



FIGURE 15

RF TO IF ISOLATION

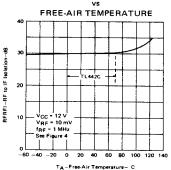
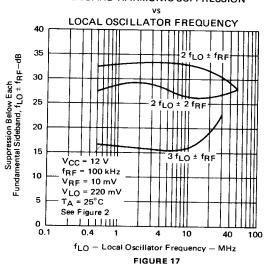



FIGURE 16


1079

## Texas Instruments

INCORPORATED

## TYPICAL CHARACTERISTICS

### SIDEBAND HARMONIC SUPPRESSION



## TYPICAL APPLICATION DATA

The TL442M and TL442C balanced mixers are designed to have considerable circuit flexibility, which results in a wide range of applications. Typical applications include use as balanced modulators for sideband-suppressed-carrier generation, product detectors for demodulation, frequency converters, and frequency or phase modulators. In addition, the TL442M and TL442C may be used in control systems and analog computers as low-level multipliers or squaring circuits.

For operation from a single 12-V supply, connect the positive terminal of the supply to  $+V_{CC}$ , the negative terminal to  $-V_{CC}$ , and the floating-ground terminal to  $R_{CC}$ . For operation from two 6-V supplies, leave  $R_{CC}$  open and connect the positive terminal of one supply to  $+V_{CC}$ , the negative terminal of the other supply to  $-V_{CC}$ , and the remaining terminals of the two supplies to the floating-ground terminal. Electrical characteristics will be unchanged with the use of either power supply option. External bypass capacitors, as shown in Figure 18, should be used for optimum performance.

The mixer's electrical performance and the inherent IC advantages of size, reliability, and component matching make it very desirable for use in communication and control systems.

1079

## Texas Instruments

INCORPORATED