
0

--

Table Of Contents

CP/M 2.2

Section:
CP/M 2 User's Guide

1 •
2.
3.
4.
5.
6.
7.
8.
9.
10.

Section:
An

1 •
2.

An Overvi~w of CP/M 2.0 Facilities ••••••••• 1
User lnterface•••••••••••••••••••••••••••••3
Console Conmand Processor (CCP) Interface •• 4
STAT Enhancements•••••••••••r••••••••••••••5
PIP Enhancements•••••••••••••••••••••••••••8
ED Enhancements•••••••••••••••••••••••••••10
The XSUB Function ••••••••••••••••••••••••• 11
BOOS Interface Conventions •••••••••••••••• 12
CP/M 2.0 ~ory Organization •••••••••••••• 27
BIOS Differences •••••••••••••••••••••••••• 28

Introduction To CP/M Features and Facilities

lntroduction •••••••••••••••••••••••••••••• 35
Functional Description Of CP/M••••••••••••37

2.1 General Conmand Structure •••••••••••• 37
2.2 Fi le References •••••••••••••••••••••• 37

3. Switching Disks ••••••••••••••••••••••••••• 40
4. The Form Of Bui It-In Comnands ••••••••••••• 41

4.1 ERA afn cr ••••••••••••••••••••••••••• 41
4.2 DIR afn cr ••••••••••••••••••••••••••• 42
4.3 REN ufn1=ufn2 cr ••••••••••••••••••••• 42
4.4 SAVE n ufn cr•••••·••••••••••••••••••43
4.5 TYPE ufn cr •••••••••••••••••••••••••• 43

5. Line Editing And Output Control ••••••••••• 45
6. Transient Comnands ••••.•••••••••••••••••••• 46

6.1 STAT cr •••••••••••••••••••••••••••••• 47
6.2 ASM ufn cr·•·••••••••••••••••••••••••50
6.3 LOAD ufn cr••••••••••••••••••••••••••S1
6.4 PIP er •••••••••••••••••••••• ••••••• •• 52
6.5 ED ufn cr••••••••••••••••••••••••••••S9
6.6 SYSGEN cr••••••••••••••••••••••••••••61
6.7 SUBMIT ufn parm#1 parm#n cr ••••••••• 62
6.8 D.JMP ufn cr •••••••••••••••••••••••••• 64
6 • 9 MOVC PM c r •••••••••••••••••••••••••••• 6 4 .

7. BOOS Error Messages ••••••••••••••••••••••• 67
8. Operation Of CP/M On The MDS •••••••••••••• 69

Section:
CP/M As semb I er (ASM}: User's Gui de

1 •
2 .•
3.

4.

5.

lntroduction •••••••••••••••••••••••••••••• 71
Program Format •••••••••••••••••••••••••••• 72
Forming The Operand ••••••••••••••••••••••• 74
3. 1 Labe I s ••••••••••••••••••••••••••••••• 7 4
3 .• 2 Nume r i c Cons tan ts •••••••••••••••••••• 7 4
3.3 Reserved Words ••••••••••••••••••••••• 75
3.4 String Constants ••••••••••••••••••••• 76
3.5 Arithmetic and Logical Operators ••••• 76
3.6 Precedence Of Operators •••••••••••••• 77

Assembler Directives •••••••••••••••••••••• 78
4.1 The
4.2 The
4.3 The
4.4 The
4.5 The

ORG
END
EQU
SET
IF

Directive •••••••••••••••••••• 78
Directive •••••••••••••••••••• 79
Directive •••••••••••••••••••• 79
Di rective •••••••••••••••••••• 80

And ENDIF Directives •••••••••• 80
4.6 The DB Di rective ••••••••••••••••••••• 81
4.7 The fJN Directive ••••••••••••••••••••• 82

Operation Codes ••••••••••••••••••••••••••• 82
5.1 Jumps, Calls And Returns ••••••••••••• 83
5.2 lmnediate Operand lnstructions ••••••• 84
5.3 Increment and Decrement

lnstructions ••••••••••••••••••••••••• 84
5.4 Data Movement lnstructions ••••••••••• 84
5.5 Arithmetic Logic Unit Operations ••••• 85
5.6 Control lnstructions ••••••••••••••••• 86

6. Error Messages •••••••••••••••••••••••••••• 86
7. A Sample Session •••••••••••••••••••••••••• 87

Section:
ED: A Content Editor For The CP/M Disk System:
User's Manua I

1. ED Tutorial ••••••••••••••••••••••••••••••• 93
1.1 Introduction to ED ••••••••••••••••••• 93
1.2 ED Operation ••••••••••••••••••••••••• 93
1.3 Text Transfer Functions •••••••••••••• 93
1.4 Merrory Buffer Organization~ •••••••••• 97
1.5 Memory Buffer Operation •••••••••••••• 97
1 • 6 Conrna n d S r r i n gs • 9 9
1.7 Text Search and Alteration •••••••••• 100
1.8 Source Libraries •••••••••••••••••••• 103
1.9 Repetitive Comnand Execution •••••••• 104

2. ED Error Condit ions •••••••••••••••••••••• 105
3. Control Characters And Comnands •••••••••• 106

Section:
CP/M Debugging Tool (DDT): User's Guide

I. lntroduction ••••••••••••••••••••••••••••• 111
I I • OOT Comna n d s •••••••.•••••••••••••••••••••• 113

1. The A {Assemble) Comnand ••••••••••••• 113
2. The D (Display) Comnand •••••••••••••• 114
3. The F (Fil I) Comnand ••••••••••••••••• 114
4. The G (Go} Cornnand ••••••••••••••••••• 114
5. The I (Input) Comnand •••••••••••••••• 115
6. The L (List} Conmand ••••••••••••••••• 116
7. The M (Move) Comnand ••••••••••••••••• 116
8. The R (Read) Conmand ••••••••••••••••• 116
9. The S (Set) Corrmand •••••••••••••••••• 117
10.The T (Trace) Comnand •••••••••••••••• 117
11.The U {Untrace) Comnand •••••••••••••• 118
12. The X (Examine} Comnand ••••••••••••• 118

I II.Implementation Notes ••••••••••••••••••••• 119
IV. An Example•••••••••••••••••••••••••••••••120

Section:
CP/M 2.2 Interface Guide

1. lntroduction ••••••••••••••••••••••••••••• 131
2. Operating System Call Conventions •••••••• 133
3. A Sample File-To-File Copy Program ••••••• 159
4. A Samp I e Fi I e Dump Ut i Ii ty ••••••••••••••• 164
5. A Sample Random Access Program ••••••••••• 167
6. System Function Sunmary •••••••••••••••••• 176

Section:
CP/M Alteration Guide

1. lntroduction ••••••••••••••••••••••••••••• 177
2. First Level System Regenerative •••••••••• 118
3. Second Level System Generation ••••••••••• 182
4. Sample Getsys And Putsys Programs •••••••• 186
5. Diskette Organization •••••••••••••••••••• 188
6. The BIOS Entry Points •••••••••••••••••••• 190
7 • A S amp I e B I OS • 1 9 7
8. A Sample Cold Start Loader ••••••••••••••• 198
9. Reserved Locations In Page Zero •••••••••• 199
10. Disk Parameter Tables •••••••••••••••••••• 201
11. The DISKDEF Macro Library •••••••••••••••• 206
12. Sector Blocking And Deblocking ••••••••••• 210

Appendix A •••••••••••••••••••••••••••••• 212
Appendix 8•••••••••••••·••••••••··••••··215
Appendix C •••••••••••••••••• : ••••••••••• 226
Appendix D••••••••••••••••••••••••••••••232
Appendix E•••••••••••••••••··•••·•••••••235
Appendix F••••••••••••••••••••••••••••••237
Appendix G •••••••••••••••••••••••••••••• 242

Section:
Exidy Systems' CBIOS User's Guide:
Version 1.0 For CP/M 2.2

1. lntroduction ••••••••••••••••••••••••••••• 249
2. Configuration and System Generation •••••• 251

A. Hardware for the DOS and the FDS ••••• 251
B. System Ceneration •••••••••••••••••••• 252
C. Options •••••••••••••••••••••••••••••• 253
D. lncompatibi lities •••••••••••••••••••• 254
E. Sector Skew Pattern •••••••••••••••••• 254
F. Special Video Display lnterface •••••• 255

3. Features ••••••••••••••••••••••••••••••••• 256
A. Error Recovery ••••••••••••••••••••••• 256
B. CP/M Programning ••••••••••••••••••••• 257

4. Error Messages ••••••••••••••••••••••••••• 259

Section:
Exidy Systems' Excopy User's Guide: Version 2.0

1. lntroduction ••••••••••••••••••••••••••••• 262
2. Use •••••••.•••••••••••••••••••••••••••••• 263
3. Samp I e Run ••••••••••••••••••••••••••••••• 264

A. Excopy With Two Multiple Drives •••••• 264
B. Excopy With One Drive •••••••••••••••• 264
C. Format Only •••••••••••••••••••••••••• 265

4. Error Messages ••••••••••••••••••••••••••• 266
A. Can Not Format, Try Again •••••••••••• 266
B. Destination Is Write Protected ••••••• 266
C. Write Error On Track #XX ••••••••••••• 267
D. Read Back Error On Track #XX ••••••••• 267
E. Additional Messages •••••••••••••••••• 267

5. Recovery•••••••••••••••••••••••••••••••••268

CP/M 2 USE R'S G UIO E

,.

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof withou·t obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

CP/M 2 USE R'S GUIDE

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 El~o Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

1.

2.

3.

4.

5.

6.

7.

8.

9.

CP /M 2 USER'S GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

An Overview of C.l?/M 2.0 Facilities . .
User Interface

• Console Command .l?rocessor (CCP) Intertace

s·rA·r Enhancements • •
PIP -enhancements . . • . . • •
ED Enhancements •
The xsus Function •
300S Interface Conventions • •

CP/M 2.0 Memory Organization.

.

. . .

.

.

.

. . .

. . • . •

10. 3IOS Differences •••••••

. • 1

. . • • 3

• • 4

. . . . 5

. . . . 8

. . 10

. . . . 11

• • 12

• • 27

• • 28

1. AN OVERVIEW OF CP/M 2.0 FACILITIES.

CP/M 2.0 is a high-performance single-console operating system
which uses table driven tecnnigues ~o allow field reconfiguration to
match a wide variety of disk capacities. All of the fundamental file
restrictions are removed, wnile maintaining upward compatibility from
previous versions of release 1. Features of CP/M 2.0 include field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes. Any particular file can reacn the full drive size
with the capability to expand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.0 are physically
separated oy user numbers, with facilities for file copy operations
from one user area to another. iowerful relative-record random access
functions are present in CP/M 2.0 whlch provide direct access to any
ot the 65536 records of an eight megabyte file.

All disk-deoendent oortions of CP/M 2.0 are placed into a
BIOS-resident "disk oarameter block" which is either hand coded or
produced automaticaliy using the disk definition macro lib~ary
provided with CP/M 2.0. The end user need only specify the maximum
number of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk,
directory size information, and reserved track values. The macros use
this information to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblocking information
is also provided wnich aids in assembly or disassembly of sector sizes
which are multiples of tne fundamental 128 byte data unit, and the
system alteration manual includes general-purpose subroutines which
use the this deolocking information to take advantage of larger sector
sizes. use of these subroutines, together with the table driven data
access algoritnms, make CP/M 2.0 truly a universal data management
system.

File expansion is achieved by providing up to 512 logical tile
extents, where eacn logical extent contains 16K bytes of data. CP/M
2.0 is structured, however, so that as mucn as 128K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry), tnus maintaining compatibility with 9revious
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.0 which allow
immediate reference to any record of an eight megabyte file. Using
CP/M's unique data organization, data blocks are only allocated when
actually required and movement to a record ~osition requires little
search time. Sequential file access is upward com?atible from earlier
versions to the full .eight megaoytes, while random access
compatibility stops at 512K byte files. Due to CP/M 2.0's sim~ler and
faster random access, application ~rogrammers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules ana utilities have improvements which
corresPOnd to the enhanced file system. STAT and PIP both account for
file attributes and user areas, while the CCP provides a -1ogin"

(All Information Contained Herein is Proprietary to Digital Researcn.)

l

function to change from one user area
formats directory displays in a more
for both CRT and hard-copy devices in
functions.

to anotner. ~ne CCP also
convenient manner and accounts

its enhanced line editing

The sections below point out the individual differences between
CP/M 1.4 and CP/M 2.0: witn the understanding that the reader is
either familiar with CP/M 1.4, or has access to the 1.4 manuals.
Additional information dealing with CP/M 2.0 I/0 system alteration is
presented in the Digital Research manual dCP/M 2.0 Alteration Guide."

(All Information Contained derein is Proprietary to Digital Research.)

2

2. USER INTERFACE.

Console line processing takes CRT-type devices
three new control characters, shown with an asterisk
(the symbol "ctl" below indicates that the
simultaneously depressed):

into account with
in the list below
control key is

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-M
ctl-R
ctl-0
ctl-X

removes and echoes last character
reboot when at beginning of line
physical end of line
oackspace one cnaracter position*
(line feed) terminates current input*
(carriage return) terminates input
retype current line after new line
remove current line after new line
backspace to beginning of current line*

In ~articular, note that ctl-a produces the proper backspace overwrite
function (ctl-H can be changed internally to another character, such
as delete, through a simple single byte change). Further, the line
editor keeps track of the current prompt column position so that the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command.

(All Information Contained Herein is Proprietary to Digital Research.)

3

3. CONSOLE COMMAND PROCESSOR (CCP) INTERFACE.

There are four functional ditferences between CP/M 1.4 and CP/M
2. 0 at the console command processor (CCP) level. ·rhe CCP now
displays directory information across the screen (four elements per
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *. *'' and
"SAVE" commands have changed. The altered DIR format is
self-explanatory, while the USER command takes the form:

USER n

where n is an integer value in the range 0 to 15. Upon cold start,
the operator is automatically Hlogged" into user area number 0, which
is compatible with standard CP/M 1.4 directories. The operator may
issue the USER command at any time to move to anotner logical area
within the same directory. Drives which are logged-in while
addressing one user number are automatically active when the operator
moves to another user numoer since a user number is simply a prefix
which accesses particular directory entries on the active disks.

The active
subsequent USER
is again assumed.

user number is maintained until changed by a
command, or until a cold start operation when user 0

Due to the fact that user numbers now tag individual directory
entries, the ERA*.* command has a different effect. In version 1.4,
this command can be used to erase a directory whicn has "garbage"
information, perhaps resulting from use of a diskette under another
operating system (heaven forbid!). In 2.0, however, the ERA •.*
command affects only the cur rent user numoer. •rnus, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern ES throughout the disk).

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.0,
nowever, does not perform directory operations in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Proprietary to Digital Research.)

4

4. STAT ENHANCEMENTS.

The STAT program has a number of additional functions which
allow disk parameter display, user number display, and file indicator
manipulation. The command:

STA·r VAL:

t;>roduces a summary of the availaole status commands, resulting in the
output:

Temp R/0 Disk: d:=R/0
Set Indicator: d:filename.typ $R/O $R/ri $SYS $DIR
Disk Status : OSK: d:DSK:
Oser Status : USR:
Iobyte Assign:
(list of possible assignments)

whicn gives an instant summary of the possible STAT commands. The
command form:

wnere "d:'' is
unamoiguous or
format:

Size
48
55

65536

STAT d:filename.typ ~s

an optional
ambiguous

Recs
48
55

128

Bytes
6k

12k
2k

drive name, and "filename.typ.. is an
file name, produces the output display

Ext Ace
1 R/0 A:ED.COM
1 R/0 (A:PIP.COM)
2 R/w A:X.DAT

where tne $S parameter causes the "Size" field to be dist;>layed
(without the $S, the Size field is skipped, but the remaining fields
are dist;>layed). The Size field lists the virtual file size in
records, while the "Recs" field sums the numoer of virtual records in
each extent. For files constructed sequentially, the Size and Recs
fields are identical. The "Bytes" field lists the actual number of
bytes allocated to the corresponding file. The minimum allocation
unit is determined at configuration time, and thus the number of bytes
corresponds to the recoro count plus the remaining unused space in the
last allocated block for sequential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation figure. In the case of random access, the
Size field gives the logical end-of-file record position and the Recs
field counts the logical records of each extent (each of these
extents, however, ~ay contain unallocated "holes" even though they are
added into the record count). The "Ext" field counts the number of
logical 16K extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file, since there can be up to 128K oytes (8
logical extents) directly addressed by a single directory entry,
depending upon allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a physical extent).

The 8 Acc" field gives the R/0 or R/w access mode, which is
changed using the commands shown below. Similarly, the parentheses

(All Intormation Contained Herein is Proprietary to Digital Research.)

s

shown around the PIP.COM file name indicate that it has the "system"
indicator set, so that it will not be listed in DIR commands. ·rhe
four command forms

s·rAT d:filename.typ $R/O
STAT d:filename.typ SR/w
STAT d:filename.typ SSYS
s·rAT d:filename.typ $DIR

set or reset various permanent file indicators. The R/O indicator
places the file (or set of files) in a read-only status until changed
by a subsequent STAT command. The R/O status is recorded in the
directory .with tne file so that it remains R/O through intervening
cold start operations. The R/W indicator places the file in a
permanent read/write status. The SYS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. The "filename.typ•• may be ambiguous or unambiguous, but in
eitner case, the files whose attributes are changed are listed at the
console when the change occurs. The drive name denoted by ·• d:" is
optional.

when a file is marked R/O, subsequent attempts to erase or write
into the file result in a terminal BOOS message

Bdos Err on d: File R/O

The BOOS then waits for a console input before performing a subsequent
warm start (a "return" is sufficient to continue). The command form

s·rAT d: OSK:

lists the drive characteristics of the disk named by "d:" which is in
tne range A:, B:, ••• , P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
65536: 128 Byte record Capacity

8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries

0: Checked Directory Entries
1024: Records/ Extent

128: Records/ Block
58: Sectors/ Track

2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 is an 8 megabyte drive), followed by the total
capacity listed in Kilooytes. The directory size is listed next,
followed by the ·checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start. For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start. The number of records per extent determines the
addressing capacity of each directory entry (1024 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

128K in the example above). The number of records per olock shows the
oasic allocation size (in the example, 128 records/olock times 128
bytes per record, or 16K oytes per block). The listing is then
followed by tne number of physical sectors ~er track and the number of
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be quite large, since this
mechanism is used to skip lower-numbered disk areas allocated to other
logical disks. The command form

STAT OSK:

produces a drive characteristics taole for all currently active
drives. The final STAT command form is

STAT USR:

which produces a list of the user numbers which have files on the
currently addressed disk. The display format is:

Active User: 0
Active Files: 0 1 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a list of user numbers
scanned from the current directory. In the above case, the active
user number is 0 (default at cold start), with three user numbers
whicn have active files on the current disk. The operator can
subsequently examine the directories of the other user numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level.

(All Information Contained Herein is Proprietary to Digital Research.)

7

5. PIP ENHMCEMENTS.

PIP provides three new functions which account for the features
of CP/M 2.0. All three functions take the form of file oarameters
which are enclosed in square brackets following the appropriate file
names. The commands are:

Gn Get File from User number n
(n in the range~ - 15)

w write over R/0 files without
console interrogation

R Read system files

The G command allows one user area to receive data files from another.
Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4. The
command

PIP A:=A:*.*[G2]

copies all of the tiles from the A drive directory for user number 2
into the A drive directory of the currently logged user number. Note
that to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP program itself is initially copied to a
user area (so that subsequent files can be copied) using the SAVE
command. The sequence of operations shown below effectively moves PIP
from one user area to the next.

USER 0
DOT PIP.COM
(note PIP size

G0
USER 3
SAVE s PIP.COM

login user a
load PIP to memory

S)
return to CCP
login user 3

wheres is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number scan be determined when PIP.COM is
loaded under ODT, by referring to the value under the "NEXT" display.
If for example, the next available address is 1000, then PIP.COM
requires lC hexadecimal pages (or 1 times 16 + 12 = 28 pages), and
thus the value of sis 28 in the subsequent save. Once PIP is co~ied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which is
set to a permanent R/0 status. If attem9t is made to overwrite a R/0
file, the prompt

(All Information Contained Herein is Proprietary to Digital Research.)

8

OF.STINATION FILE IS R/0, DELETE (!/N)?

is issued. If the operator responds with the character •y• then the
file is overwritten. Otherwise, the response

** NOT DELETED**

is issued, the file transfer is skiP.P.P.ed, and PIP continues with the
next operation in sequence. In order to avoid the prompt and response
in the case of R/0 file overwrite, the command line can include thew
parameter, as shown below

. PIP A:•B:*.COM[W]

which copies all non-system files to.the A drive from the B drive, and
overwrites any R/0 files in the process. If the operation involves
several concatenated files, thew parameter need only be included with
the last file in the list, as shown in the following example

PIP A.DAT= B.DAT,F:NEW.DAT,G:OLD.DAT[w]

Files with the system· attribute can be included in PIP transfers
if the R parameter is included, otherwise system files are not
recognized. The command line

PIP ED.COM= 8:ED.COM[R]

for example, reads the ED.COM file from the B drive, even if it has
been marked as a R/0 ana system file. The system file attributes are
copied, if present.

It should be noted that downward compatibility with previous
versions of CP/M is only maintained if the file does not exceed one
megaoyte, no file attributes are set, and the file is created by user
0. If compatibility is required with non-standard (e.g., "double
density") versions of 1.4, it may be necessary to select 1.4
compatibility mode·when constructing the internal disk parameter olock
(see the "CP/M 2.0 Alteration Guide," and refer to Section 10 which
describes BIOS differences).

(All Information Contained Herein is Proprietary to Digital Research.)

9

6. ED ENHANCEMENTS.

The CP/M standard 9rogram editor provides several new facilities
in the 2.0 release. Experience has shown that most operators use the
relative line numbering feature of ED, and thus the editor has the ''v"
(Verify tine) option set as an initial value. The operator can, of
course, disable line numbering by typing the "-v~ command. If you are
not familiar with the ED line number mode, you may wish to refer to
tne Appendix in the £0 user's guide, where the "v" command is
described.

ED also takes file attributes into account.
attempts to edit a read/only file, the message

** FILE IS READ/ONLY**

If the operator

appears at the console. The file can oe loaded· and examined, but
cannot be altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to change the file attribute to R/W. If
the edited file has the "system" attribute set, the message

"SYSTEM" FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted. Again,
the STA"r program can be used to change the sys tern at tribute, if
desired.

Finally, the insert mode ("i ·•) command allows CRT line editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

HJ

7. THE XSUB FUNCTION.

An additional utility program is supplied with version 2.1 of
CP/M, called XSUB, which extends the P.Ower of the SUBMIT facility to
include line input to programs as well as the console command
processor. The XSUB command is included as the first line of your
submit file and, when executed, self-relocates directly below the CCP.
All subsequent submit command lines are processed by XSUB, so that
progr~s which read buffered console input (BDOS function 11) receive
their input directly from the submit file. For example, the file
SAVER.SUB could contain the submit lines:

XSUB
DDT
I$1.HEX
R
GI
SAVE l $2.COM

with a subsequent SUBMIT command:

SUBMIT SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. The
XSUB program loads, followed by DDT which is sent the command lines
"IX.HEXM "R• and •G0M thus returning to the CCP. The final command
"SAVE 1 Y.COM" is processed by the CCP.

The XSUB program remains in memory, and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent
submit command streams do not require the XSUB, unless an intervening
cold start has occurred. Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research.)

11

8. BOOS INTERFACE CONVENTIONS.

CP/M 2.~ system calls take place in exactly the same manner as
earlier versions, with a call to location 0005H, function number in
register C, and information address in register r;:,air DE. Single byte
values are returned in register A, with double byte values returned in
HL (for reasons of compatibility, register A= Land register B = H
upon return in all cases). A list of CP/M 2.0 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0. Note that a zero value is returned for
out-of range function numbers.

0 System Reset 19* Delete File
1 Console Input 20 Read Sequential
2 Console Output 21 write Sequential
3 Reader Input 22* Make File
4 Punch Output 23* Rename File
5 List Outi;>ut 24* Return Login Vector
6* Direct Console I/0 25 Return Current Disk
7 Get I/0 Byte 26 Set OMA Address
8 Set I/0 Byte 27 Get Addr (Alloc)
~ Pr int String 28* write Protect Disk

10* Read Console Buffer 29* Get Addr(R/0 Vector)
11 Get Console Status 30* Set File Attributes
12* Return Version Number 31* Get Addr(Disk Parms)
13 Reset Disk System 32* Set/Get user Code
14 Select Disk 33* Read Random
15* Open File 34* Write Random
16 Close File 35* Com~ute File Size
17* Search for First 36* Set Random Record
18* Search for Next

(Functions 28, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console I/0.

Direct Console I/0 is supported under CP/M 2.0 for those
applications where it is necessary to avoid the BOOS console I/0
operations. Programs whicn currently perform direct I/O through the
BIOS should be changed to use direct I/0 under BOOS so that they can
be fully supported under future releases of MP/Mand CP/M.

Upon entry to function 6, register E eitner contains hexadecimal
FF, denoting a console input request, or register e contains an
character. If the inout value is FF, then function 6 returns
if no character is ready, otherwise A contains the next console
character.

If the input value in e is not FF, then function 6 assumes
E contains a valid ASCII character which is sent to the console.

ASCII
A= 00

input

that

(All Information Contained Herein is Proprietary to Digital Research.)

12

Function 10: Read Console Buffer.

The console buffer read operation remains unchanged except that
console line editing is supported, as described in Section 2. Note
also that certain functions which return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the
prompt ended (previously, the carriage returned to the extreme left
margin). This new convention makes operator data input and line
correction more legible.

Function 12: Return Version Number.

Function 12 has been redefined to provide information which
allows version-independent programming (this was previously the "lift
headff function which returned HL=0000 in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with H = 00 for the CP/M release (H = 01 for MP/M), and L = 00 for all
releases orevious to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L~ with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application µrograms which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file O?erations described below, DE addresses a file
control block (FCB). Further, all directory operations take place in
a reserved area which does not affect write buffers as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
the file is accessed randomly. The default file control block
normally located at 005CH can be used for random access files, since
oytes 007DH, 007EH, and 007FH are available for this purpose. For
notational purposes, the FCB format is shown with the following
fields:

(All Information Contained Herein is Proprietary to Digital Research.)

13

--ldrlfllf21/ /lf8ltllt2lt31exlslls21rcld01/ /ldnlcrlr0lrllr21
--00 01 02 ••• 08 09 10 11 12 13 14 15 16

where

dr drive code (9 - 16)

• • •

0 => use default drive for file
l => auto disk select drive A,
2 => auto disk select drive B,
. . .
16=> auto disk select drive P.

fl ••• f8 contain the file name in ASCII
upper case, with high bit= 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit= 0
tl', t2', and t3' denote the
bit of these oositions,
tl' = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list

31 32 33 34 35

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/0

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

re record count for extent "ex,"
takes on values from 0 - 128

d0 ••• dn filled-in by CP/M, reserved for
system use

er current record to read or write in
a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

Function 15: Open File.

The Open File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed. Note that
previous versions of CP/M defined this byte as zero, but made no

(All Information Contained Herein is Proprietary to Digital Research.)

14

cnecks to assure compliance. Thus, the byte is cleared to ensure
upward compatibility with the latest version, where it is required.

Function 17: Searcn for First.

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise a value of A equal to 0,
1, 2, or 3 is returned indicating the file is present. In the case
that the file is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is A* 32 (i.e., rotate the A register left 5 bits, or ADD A
five times). Although not normally required for application programs,
the directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from fl through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, out does allow complete flexibility to scan all
current directory values. If the dr field is not·a question mark, the
s2 byte is automatically zeroed.

Function 18: Search for Next.

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function·19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range 0 to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

15

Function 22: Make File.

~he Make File operation is identical to previous versions of
CP/M, except that byte s2 is zeroed upon entry to the BOOS.

Function 23: Rename File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range 0 to 3 is returned.

Function 24: Return Login Vector.

The login vector value returned by CP/M 2.0 is a 16-bit value in
BL, where the least significant bit of L corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: Write Protect Current Disk.

The
protection
the disk,
message

disk write protect function provides tem9orary write
for the currently selected disk. Any attem9t to write to
before the next cold or warm start operation produces the

Bdos Err on d: R/0

Function 29: Get R/0 vector.

Function 29 returns a bit vector in register pair HL wnicn
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant oit corresponds to drive A,
while the most significant bit corresponds to drive P. ~he R/0 bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which dete9t changed disks.

Function 30: Set File Attributes.

The Set .. File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0 and System attributes (tl' and t2' above) can be
set or reset. The DB pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

matcn, and chanqes the matched directory entry to contain the selected
inaicators. Indicators fl' through f4' are not 1?resently used, but
may be useful for applications ~rograms, since they are not involved
in the matching process during file open and close operations.
Indicators fS' tnrough f8 1 and t3' are reserved for future system
ex-i;>ansion.

Function 31: Get Disk Parameter' Block Address.

·rhe address of the BIOS resident dJsk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two pur~oses. First, the disk parameter values can
oe extracted for display and space-computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, a-i;>9lication
programs wi.11 not require this facility.

Function 32: Set or Get User Code.

An application program can change or interrogate the currently
active user number oy calling function 32. If register E = FF
nexaoecimal, then tne value of the current user number is returned in
register A, where the value is in the range 0 to 31. If register Eis
not FF, then the current user number is changed to the value of E
(modulo 32).

Function 33: Read Random.

·!'he Read Random function is similar to the sequential file read
operation of previous releases, except that the read o-i;>eration takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 oits is stored with least significant oyte first (r0), middle
oyte next (rl), and high byte last (r2). CP/M release 2.0 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file.

Thus, in version 2.0, the r0,rl byte pair is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from 0 to 65535, providing access to any particular
record of the 8 megabyte file. In order to ~rocess a file using
random access, the base extent (extent -0) must first be opened.
Although the base extent may or may not contain any allocated data,
this ensures that the file is properly recorded in the directory, and
is visible in DIR requests. The selected record number is then stored
into the random record field (r0,rl), and the BOOS is called to read
the record. Upon return from the call, register A either contains an

(All Intormation Contained fferein is Proprietary to uigital Research.)

17

error code, as listed below, or the value 00 indicating the operation
was successful. In the latter case, the current OMA address contains
the randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. Tnus, subsequent
random read operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. ·rhus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a seguen~ial write operation. You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
listed below.

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

error code 01 and 04 occur when a random read operation accesses a
data olock whicn has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, out can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating 09eration complete.

Function 34: write Random.

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the ,current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the rando~ record number is not changed as a result of the
writ~. The logical extent number and current record positions of the
file control block are set to corresoond to the random record which is
being written. Again, sequential· read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18

switch as it does in sequential mode under either CP/M 1.4 or CP/M
2 • r, •

·rhe error codes returned by a random write are identical to the
random read Ol?eration with the addition of error code dS, which
indicates that a new extent cannot be created due to directory
overflow.

Function 35: Compute File Size.

when com?uting the size of a file, :the DE register pair
addresses an FCB in random mode format (bytes r0, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual" file size which is, in effect, the record address of· the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is al, then the file contains the
maximum record count 65536 in version 2.0. Otherwise, bytes r0 and rl
constitute a 16-bit value (r0 is the least significant byte, as
before) which is the file size.

Data can be ap9ended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, tnen performing a sequence of random writes starting at the
preset record address.

Tne virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes·• exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data i"s actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the BOOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point. The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the. positions of various •key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36

· is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

This section is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RA~DOM.COM, the CCP level
command:

RANDOM X.DA'r

starts the test program. ·rhe program looks for a file by
X.DAT (in this particular case) and, if found, proceeds to
console for input. If not found, the file is created
prompt is given. Each prompt takes the form

next command?

the name
prompt the

before the

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nR 0

where n is an integer value in the range 0 to 65535, and w, R, and Q
are simole command characters corresoonding to random write, random
read, and quit processing, respectively: If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the- character string into the
X.DA'r file at record n. If the R command is issued, RANDOi-1 reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console'command processor. In the interest of brevity (ok, so
the program's not so brief), the only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label .. ready" where the individual commands are interpreted. ·rhe
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. ·rhe utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.)

20

which contain the t;>rincipal input line processor,
·rhis 1;>articular program shows the elements of
processing, and can be used as the basis for
development.

called
random
further

"readc."
access

program

0100

0000 =
0005 =

0001 =
0002 =
0009 =
000a =
0tHJc =
:cl00f =
0ir:H0 =
0016 =
~hi2l =
0~22 =

~05c =
0tl7d =
007f =
0080 =

000d =
000a =

0100 3lbc0

0103 0e0c
0105 cd050
0108 fe20
tt,Hla d2160

010d lllb0
0110 cdda0
0113 c3000

•*** I

•* * I

;* samole random access orogram for c~/m 2.0 *
·* * I

•*** I

. ,
reboot
bdos . ,
coninp
conout
t;>string
rstring
version
openf
closef
make£
readr
writer .
I

fcb
ranrec
ranovf
buff
;
er
lf .
I

org

equ
egu

egu
egu
egu
equ
egu
egu
egu
equ
equ
equ

egu
equ
equ
equ

egu
egu

100h

0000h
0005h

l
2
9
10
12
15
16
22
33
34

005ch
fcb+33
fcb+35
0080h

0dh
0ah

;base of toa

; system reboot
;bdos entry point

;console input function
;console output function
;print string until '$'
;read console buffer
;return version number
;file open function
;close function
;make file function
;read random
;write random

;default file control block
;random record oosition
;high order (overflow) byte
;buffer address

;carriage return
;line feed

•*** I

• * * ,
;* load SP, set-up file for random access *
•* * ,.
•*** I

lxi SJ;>,Stack
• , . version 2.0? I

mvi c,version
call bdos
cpi 2.0h ;version 2.0 or better?
jnc versok . bad version, message and go back I

lxi d ,badver
call -r;>r int
jmt;> reboot .

I

versok:
; correct version for random access

(All Information Contained Herein is Proprietary to Digital Research.)

21

0116 0e0f mvi c,or;>enf ;ooen default fcb
0118 115c0 lxi d,fcb
011b cd050 call bdos
0lle Jc inr a ;err 255 becomes zero
rJllf c2370 jnz reaay .

I . cannot open file, so create it I

dl22 0el6 mvi c,makef
0124 115c0 lxi d,fcb
0127 cd050 call bdos
012a 3c inr a ;err 255 becomes zero
012i:> c23.70 jnz ready

• I . cannot create file, directory full ,
012e 113a0 lxi d,nospace
8131 cdda0 call orint
0134 c3000 jmp reboot ;back to ccp . . ,

0137 cde50
013a 227d0
013d 217f0
0140 3600
3142 fe51
0144 c2560

0147 0eli
0149 115c0
014c cd050
014f 3c
0150 cab90
0153 c3000

0156 fe57
0158 c2890

015b ll4d0
a1se cdda0

·*** ,
·* * ,
. * ,
·* ,

loop back to "ready" after each command *
*

•*******•*** , . ,
ready:
• file is ready for processing , . ,

call readcom ;read next command
snld ranrec ;store input recordi
lxi h,ranovf
mvi m,0 ;clear high byte if set
cpi . 0. ;quit?
jnz notq

• , . quit processing, close file ,
mvi c,closef
lxi d,fcb
call bdos
inr a ;err 255 becomes 0
jz error ;error message, retry
j mt;> reboot ;back to ccp . ,

•*** ,
•* * I

:* end of quit command, process write *
•* * I

•*** I

notg: . not the quit command, random write? ,
cpi • w•
jnz notw .

I . this is a random write, fill buffer until er ,
lxi d,datmsg
call print ;data prompt

(All Information Contained Herein is Proprietary to Digital Research.)

22

0161 0e7f
0163 21800

~166 cs
0167 es
wll68 cdc20
0160 el
'116c cl
016d fe0d
016£ ca780

0172 77
0173 23
liJ174 '6d
0175 c2660

'6178 3600

017a 0e22
017c ll5c0
017f cd050
0182 b7
0183 c2b91:1
~ld6 c337rl

0189 fe52
018b c2b90

018e 0e21
0190 ll5c0
0193 cd050
0196 b7
0197 c2b90

019a cdcf0
019d tae80
019£ 21800

0la2 7e
0la3 23
0la4 e67f
0la6 ca370
0la9 cs
0laa es

rloop:

.
I

er loop:
• I

• I .
I

.
I

mvi
lxi
J read
pusn
push
call
pop

c,127 ;up to 127 characters
h,buff ;destination

next character to buff
b ;save counter
h 1next destination
getchr ;charactex to a
h ;restore counter
b ;restore next to fill
er ;end of line?
erlooo

pop
CJ;>i
jz
not
mov
inx
dcr
jnz

end, store character
m,a
h
C
rloop

;next to fill
;counter goes down
;end of Duffer?

end of read loop, store 00
mvi m,0

write the record to selected record number
mvi c,writer
lxi d,fcb
call bdos
ora a ;error code zero?
jnz error ;message if not
jmp ready ;for another record

•*** I

•* * I

;* end of write command, process read *
·* * I

•*** I

notw:
• not a write command, read record? ,

cpi • RI
jnz error ;skip if not .

I

• read random record I

mvi c,readr
lxi d,fcb
call bdos
ora a ;return code 00?
jnz error .

I

• read was successful, write to console ,
call crlf ;new line
mvi c,128 ;max 12d characters
lxi h,buff ;next to get

wloop:
mov a,m ;next character
inx h ;next to get
ani 7fh ;mask parity·
jz ready ;for another command if 00
push b ;save counter
push h ;save next to get

(All Information Contained Herein is eroprietary to Digital Research.}

23

0lab fe20
0lad d4c80
0lbki el
dlbl cl
0 lb2 0d
dlb3 c2a20
dlb6 c3370

0lb~ 11590
0lbc cdda0
0lbf c3370

0lc2 0e01
0lc4 cd050
0lc7 c9

0lc8 0etJ2
0lca Sf
0lcb cd050
0 lce c9

0lcf 3e0d
0ldl cdc80
lr1 ld4 3e0a
0ld6 cdc80
0ld9 c9

0lda dS
0 ldb cdcf 0
0lde dl
0ldf 0e09
0lel cd050
0le4 c9

cpi ;graphic?
enc putcnr ;skip output if not
pop h
pop b
dcr C ; count=count-1
jnz wloop
jmp ready

• I

·*** I

•* * I

;* end of read command, all errors end-uo here *
•* * ,
•*** I

• I

error:

• I

lxi
call
jmp

d ,er rmsg
print
ready

•***********************************"**************** ,
·* * I

;* utility subroutines for console i/o *
·* * I

•*** ,
getchr:

. ,
putchr:

;
crlf:

.
I

pr int:

. ,
read com:

;read next console character to a
mvi
call
ret

c,coninp
bdos

;write character from a to console
mvi
mov
call
ret

c,conout
e,a ;character to send
bdos ;send character

;send carriage return line feed
mvi a,cr ;carriage return
call putchr
mvi a,lf ;line feed
call putchr
ret

;print
push
call
pop
mvi
call
ret

the buffer addressed by de until$
d
crlf
d ;new line
c,pstring
bdos ;print the string

(All Information Contained Herein is Proprietary to Digital Research.)

24

0le5 116b0
0le8 cdda0
0leb 0e0a
Bled 117a0

.0lf0 cd050

0lf3 21000
01£6 117c0

• ,

01£9 la readc:
iiilfa 13
0lfb b7
'1lfc c8

0lfd d630
0lff fe0a
0201 d2130

0204 29
0205 4d
0206 44
0207 29
0208 29
0209 09
020a 85
~2!00 &t
020c d2f90
020f 24
021d c3f90

0213 c630
0215 fe61
0217 d8

0218 e65f
021a c9

• ,

• ,

endrd: . ,

. ,

. ,

,read
lxi
call

the next command line to the conbuf
d,prompt

mvi
lxi
call
command
lxi
lxi
ldax
inx
ora
rz

t;>rint ,command?
c,rstring
d,conbuf
bdos 1read command line
line is present, scan it
h,0 :start with 0000
d,conlin1command line
d 1next command cnaracter
d :to next command t;>osition
a :cannot be end of command

zero, numeric? not
sui
cpi
jnc
add-in
dad
mov
mov
dad
dad
dad
add
mov
jnc
inr
jmp

• 0 •
10
endrd

:carry if numeric

next digit
h · 1 *2
c,1
b,h
h
h
b
1
l,a
readc
h
readc

1bc =value* 2
1*4
1*8
1*2 + *8 = *10
1+digit

1for another char
:overflow
:for another char

end of read, restore value in a
adi '0' :command
cpi •a• : translate case?
re
lower case, mask lower case bits
ani 101$llllb
ret

•*** ,
•* ,
1* string data area for console messages

*
* . * * ,

•*** ,
- badver:

021b 536£79 db 'sorry, you need cp/m version 2$'
nost;>ace:

023a 4e6f29 db
datmsg:

024d 547970 db
errmsg:

0259 457272- db
prompt:

026b 4e6570 db . ,

'no directory space$'

'type data:$'

'error, try again.$'

'next command?$'

(All Information Contained Herein is Proprietary to Digital Research.)

25

027a 21
027b
027c
0021 =

029c

tJ2bc

•*** I

•* * I

1* fixed and variable data area *
•* * I

•*** I

conbuf: db
consiz: ds
conlin: ds
conlen equ .
I

stack:
ds

end

conlen ,length of
1 ,resulting
32 ;length 32
$-consiz

console buffer
size after read
buffer

32 ;16 level stack

(All Information Contained Herein is Proprietary to Digital Research.) ..

26

9. CP/M 2.0 MEMORY ORGA~IZATION.

Similar to earlier versions; CP/M 2.0 is field-altered to fit
various memory sizes, depending upon the host computer memory
configuration. Typical base addresses for popular memory sizes are
shown in the table below.

Module
CCP
BOOS
BIOS
Top of Ram

20k
3400H
3C008
4A008
4FFFH

24k
44008
4C00H
5A00H
SFFFH

32k
6400H
6C00H
7A008
7FFFH

48k
A400H
AC00H
BA00H
BFFFH

64k
E400H
EC00H
FA00H
FFFFH

The distribution disk contains a CP/M 2.0 system configured for a 20k
Intel MOS-800 with standard IBM a• floppy disk drives. The disk
layout is shown below:

Sector
1
2
3
4
5
6
7
ti
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Track 00 Module
(Bootstrap Loader)
3400H CCP + 000H
3480H CCP + 080H
3500H CCP + 100H
35808 CCP + 180H
3600H CCP + 200H
3680H CCP + 280H
370~H CCP + 3008
3780H CCP + 3808
3800H CCP + 400H
3880H CCP + 480H
3900H CCP + 500H
39808 CCP + 580H
3A00H CCP + 600H
3A80H CCP + 6808
3800B CCP + 700H
3B80H CCP + 780H
3C00H BOOS+ 000H
3C80H BOOS+ 0808
3D00H BDOS + 100H
30808 BOOS+ 180H
3E00H BOOS+ 200H
3E80H BOOS+ 280B
3F00H BOOS+ 300H
3F80H BOOS+ 380H
40008 BOOS+ 4008

Track 01 .Module
40808 BOOS+ 480H
4100H BOOS+ 5008
41808 BOOS+ 5808
4200H BOOS+ 600H
42d0B BOOS+ 680H
43008 BOOS+ 700H
4380H BOOS+ 780H
44008 BOOS+ 800H
44808 BOOS+ 880H
4500H BOOS+ 900H
45808 BOOS+ 980H
46008 BOOS+ A00H
4680H BOOS+ A80H
4700H BOOS+ B00H
4780H BOOS+ B80H
4800H BOOS+ C00H
4880H BOOS+ C80H
49008 BOOS+ 000H
49808 BOOS+ 080H
4A00H BIOS+ 000H
4A80H BIOS+ 080H
4B00H BIOS+ 1008
4B80H BIOS+ 1808
4C00H BIOS+ 200H
4C80H BIOS+ 280H
4D01H BIOS+ 300H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4. The BOOS portion,
however, occupies one more 256-byte ~age and the BIOS portion extends
through the remainder of track 01. Thus, the CCP is 8008 (2048
decimal) bytes in length, the BOOS is E00H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. In
version 2.0, the BIOS portion contains the standard subroutines of
1.4, along with some initialized table space, as described in the
following section.

(All Information Contained Herein is Proprietary to Digital Research.)

27

10. BIOS DIFFERENCES.

The CP/M 2.0 Basic I/O System differs only slightly in concept
from its oredecesssors. Two new jump vector entry points are defined,
a new sector translation subroutine is included, and a disk
characteristics table must be defined. The skeletal form of these
changes are found in the program shown below.

1:
2:
3:
4: ;
5:
6:
7:
a: ,
9: bpb

rpb
maxb

;
boot:
• I

org
maclib
jmp
. . .
jmp

4000h
diskdef
boot

listst ;list status
sectran ;sector translate
4

jmp
disks
large
equ
equ

capacity drive

equ
diskdef
diskdef
diskdef
diskdef

ret

16*1024 ;bytes per block
bpb/12B :records per block
65535/rpb ;max block number
0,l,58,3,bpb,maxb+l,128,0,2
l,l,58,,bpb,maxb+l,128,0,2
2,0
3,1

listst: xra
ret

10:
11:
12:
13:
14:
15:
16:
17:
ld:
19:
21d:
21:
22:
23:
24:
25:
26:
27:
2a: ;
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

:nop

a :nop

4 2:
43:
44:
4 5:
46:
41:

;
seldsk:

• I

selsec:

. ,

;drive number inc
lxi h,0 ;0000 in bl oroduces select error
mov a,c ;a is disk number 0 ••• ndisks-1
cpi ndisks ;less than ndisks?
rnc ;return with HL • 0000 if not
proper disk number, return dpb element address
mov l,c
dad h ;*2
dad h ;*4
daa h ;*8
dad h ;*16
lxi d,dpbase
dad d ;HL=.dpb
ret

;sector number inc
lxi h,sector
mov
ret

m,c

sec tr an:
;translate sector BC using table at DE

;HL = .tran xchg
dad b ;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

48: :
49:
50: :
51:
52:
53:
54:
55:

if double precision tran dad b again
mov l,m
fill both Hand
ret

1
sector: ds

endef
end

1

:only low byte necessary here
L if double precision tran
:HL • ??ss

Referring to the program shown above, lines 3-6 represent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jump
vector elements). The last two elements provide access to the
hLISTST" (List Status) entry point for DESPOOL. The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different than the previous 1.4 release. It should be noted that
the 1.4 DESPOOL orogram will not operate under version 2.0, but an
update version will be available from Digital Research in the near
future.

The "SECTRAN" (Sector Number Translate) entry shown in the jump
vector at line 6 provides access to a BIOS-resident sector translation
subroutine. This mechanism allows the user to specify the sector skew
factor and translation for a particular disk system, and is described
below.

A macro library is shown in the listing, called DISKDEF,
included on line 2, and referenced in 12-15. Although it is not
necessary to use the macro liorary, it greatly simplifies the disk
definition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library is
included with all CP/M 2.0 distribution disks. (See the CP/M 2.0
Alteration Guide for formulas which you can use to hand-code the
tables produced by the DISKOEF library).

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKOEF
• • • • • •
DISKS n
DISKDEF 0, •••
OISKDEF 1, •••
• • • • • •
DISKDEF n-1
.
ENDEF

where the MACLia statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range l to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-1 (corresponding to logical drives A
through P). Note that the DISKS and OISKDEF macros generate in-line

(All Information Contained Herein is Proprietary to Digital Research.)

29

fixed data tables, and thus must be placed in a non-executable portion
of your BIOS, typically directly following the BIOS jump vector.

The remaining portion
DISKDEF macros, with the
END statement. The ENOEF
necessary uninitialized RAM

of your BIOS is defined following the
ENDEF macro call immediately preceding the

(End of Diskdef) macro generates the
areas which are located above your BIOS.

The form of the DISKDEF macro call is

OISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs,[0]

where

dn is the logical disk number, 0 to n-1
fsc is the first physical sector number (0 or 1)
lsc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00
(0] is an optional 1.4 compatibility flag

'rhe value ''dn" is the drive number being defined with this DISKDEF
macro invocation. The "fsc" parameter accounts for differing sector
numbering systems, and is usually 0 or 1. The "lsc" is the last
numbered sector on a track. when present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omitted (or equal to 0). The "bls .. parameter.
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and tqe BIOS-resident ram space is reduced. The "dks"
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. The value of .. dir .. is the total.number of
directory entries which may exceed 255, if desired. The "cks ..
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
·is the case with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically 0,. since the probability
of changing disks without a restart is quite low. The ''ofs" value
determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system

(All Information Contained Herein is Proprietary to Digital Research.)

30

space or to simulate several logical drives on a single large capacity
physical drive. Finally, the [0] parameter is included when file
compatibility is required with versions of 1.4 which have been
modified for higher density disks. This parameter ensures that only
16K is allocated for each directory record, as was the case for
previous versions. Normally, this parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i,j

gives d.isk i th.e same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

DISKS
DISKDEF
DISKDEF
DISKOEF
DISKOEF

. . . .
ENDEF

4
0,l,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes ?er data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M
2.0. All disks have identical parameters, except that drives 0 and 2
skip three sectors on every data access, while disks land 3 access
each sector in sequence as the disk revolves (there may, however, be a
transparent hardware skew factor on these drives).

The DISKS macro generates n •disk header blocks," starting at
address DPBASE which is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. In the four drive standard system, for
example, the DISKS macro generates a table of the form:

OPBASE
DPE0:
DPEl:
DPE2:
DPE3:

EQU $
DW XLT0, 0000H, 00008, 00008 ,DIRBUF ,DPB0 ,.CSV0 ,ALV0
OW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV1,ALV1
DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the OPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive 0
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.0 Alteration Guide, but basically
address the translation vector for the drive (all reference XLT0,
which is the translation vector for drive 0 in the above example),

(All Information Contained Herein is Proprietary to Digital Research.)

31

followed· by three 16-bit "scratch" addresses, followed by the
directory buffer address, disk parameter block address, check vector
address, and allocation vector address. The check and allocation
vector addresses are generated by the ENDEF macro in the ram area
following the BIOS code and tables.

The SELDSK function is extended somewhat in version 2.0. In
particular, the selected disk number is passed to the BIOS in register
c, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.0,
however, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE0, DPEl, DPE2, or DPE3, in the
above example) in register HL. If SELDSK returns the value HL •
0000H, then the BOOS assumes the disk does not exist, and prints a
select error mesage at the terminal. Program lines 22 through 36 give
a sample CP/M 2.0 SELOSK subroutine, showing only the disk parameter
header address calculation.

The subroutine SECTRAN is also included in version 2.0 which
performs the actual logical to physical sector translation. In
earlier versions of CP/M, the sector translation process was a part of
tne BOOS, and set to skip six sectors between eacn read. Due
differing rotational speeds of various disks, the translation function
has become a part of the BIOS in version 2.0. Thus, the BOOS sends

, sequential sector numbers to SECTAAN, starting at sector number 0.
~he SECTRAN subroutine uses the sequential sector number to produce a
translated sector number which is returned to the BOOS. The BOOS
subsequently sends t·he translated sector number to SELSEC before the
actual read or write is performed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
there is no translation necessary. In this case, the "skf" parameter
is omitted in the macro call, and SECTRAN simply returns the same
value which it receives. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKOEF macro call:

XLT0: DB
OB

l,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. The sector to translate is received in register
pair BC. Only the C register is significant if the sector value does
not exceed 255 (B = 00 in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresponding to the first element of a disk parameter
header (XLT0 in the case shown above). The SECTRAN subroutine then
fetches the translated sector number by adding the input sector number
to the base of the translate taole, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L. Note that if the number
of sectors exceeds 255, the translate table contains 16-bit elements
whose value must be returned. in HL.

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS

(All Information Contained Herein is Proprietary to Digital Research.)

32

which is loaded up0n cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EOU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

4C72 =

4D80 =
013C =

BEGDAT EOU $
(data areas)
ENDOAT EQU $
DATSIZ -EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB0H-l, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

CP/M 2.0 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes. Information is provided by the BOOS
on sector write operations which eliminates the need for pre-read
operations, thus allowing olocking and deblocking to take place at the
BIOS level.

See the ucP/M 2.e Alteration Guide" for additional details
concerning tailoring your CP/M system to your particular hardware.

(All Information Contained Herein is Proprietary to Digital Research.)

33

,/

AN INTRODUCTION TO CP/M FEAT'JRES AND FACILITIES

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content-hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

Table Of Contents

An Introduction To CP/M Features and Faci Ii ties

1. lntroduction •••••••••••••••••••••••••••••• 35
2. Functional Description Of CP/M •••••••••••• 37

2.1 General Conmand Structure •••••••••••• 37
2.2 Fi le References••••••••••••••••••••••37

3. Switching Disks•••••••••••••••••••••••••••40
4. The Form Of Bui It-In Comnands ••••••••••••• 41

4.1 ERA afn cr•••••••••••••••••••••••••••41
4.2 DIR afn cr•••••••••••••••••••••••••••42
4.3 REN ufn1=ufn2 cr ••••••••••••••••••••• 42
4.4 SAVE n ufn cr •••••••••••••••••••••••• 43
4.5 TYPE ufn cr •••••••••••••••••••••••••• 43

s. Line Editing And Output Control ••••••••••• 45
6. Transient Conmands••••••••••••••••••••••••46

6.1 STAT cr••••••••••••••••••••••••••••••47
6.2 ASM ufn cr•••••••••••••••••••••••••••S0
6.3 LOAD ufn cr••••••••••••••••••••••••••51
6.4 PIP cr•••••••••••••••••••••••••••••••52
6.5 ED ufn cr••••••••••••••••••••••••••••S9
6.6 SYSGEN cr••••••••••••••••••••••••••••61
6.7 SUBMIT ufn parm#1 parm#n cr ••••••••• 62
6.8 DJMP ufn cr••••••••••••••••••••••••••64
6.9 MOVCPM cr••••••••••••••••••••••••••••64

7. BOOS Error Messages ••••••••••••••••••••••• 67
8. Operation Of CP/M On The MDS •••••••••••••• 69

CP/M is a nonitor control FCogram for microcanputer system developnent
which uses IBM-canpatible flexible disks for backup storage. Using a canputer
mainfrane based ui;on Intel's 8080 microcanputer, CP/M FCOVides a general
environnent for program construction, storage, an1 editing, along with
assembly a.rd FCogram dleck-out facilities. An imp::,rtant feature of CP/M is
that it can be easily altered to execute with any canputer configuration which
uses an Intel 8080 (or Ziloq Z-80) Central Processing Unit, and has at least
16K bytes of main memory with up to four IBM-canpatible diskette drives. A
detailed discussion of the nodifications required for any particular hardware
environnent is given in the Digital Researdl document entitled "CP/M System
Alteration Guide." Although the standard Digital Research version operates on
a single-density Intel MIS 800, several different hardware manufacturers
SUR;X)rt their own il'1)ut-output drivers for CP/M.

The CP/M m:mitor provides rapid access to programs through a
canprehensive file management package. 'lbe file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
seguential arrl rardan file access. Usin;1 this file system, a large nurrber of
distinct FCograms can be stored in both murce a.rd machine executable form.

CP/M also supports a p::,werful context editor, Intel-canpatible assembler,
and debugger sli:>systems. Optional software includes a i;owerful
Intel-canpatible macro assembler, synt>olic debugger, along with various
high-level languages. When coopled with CP/M's O:msole canmaoo Processor, the
resulting facilities e;;Jual or excel similar large canputer facilities.

CP/M is logically divided into several distinct parts:

BIOS Basic I/0 System (hardware dependent)

aoa; Basic Disk Operatirx;J System

CCP Console CClmnand Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the
diskette drives arrl to interface staooard peripherals (teletype, CRl', Paper
Tape Recrler/Plmdl, aoo user-defined peripherals), aoo can be tailored by the
user for artf particular hardware envirOJ111ent by "patching" this p:>rtion of
CP/M. The BIXl, IXOVides disk management by controlling one or nore disk
drives containing irrlependent file directories. The ara; implements disk
allocation strategies "'1ich trovide fully dynamic file construction while
minimizirg hecrl novement across the disk durirg access. 'Any particular file
may contain aey nunt>er of records, not exceedin;J the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files. The

35

BOOS has entry p:,ints \tbich include the followin:J {X'itnitive operations \tbich
can be {X'ogramrnatically accessed:

SFAR<lf

OPEN

CLOSE

WRITE

SELECT

Look for a particular disk file by name.

Open a file for further operations.

Close a file after processin:J.

ChciBJe the name of a particular file.

Read a record fran a particular file.

Write a record onto the disk.

Select a pa.rticular disk drive for further
operations.

The CCP provides syirt>olic interface between the user" s console and the
remainder of the CP/M system. The CCP reads the console device and i;rocesses
canmands \tbich include listinq the file directory, EX' intirq the contents of
files, and controllin; the operation of transient programs, such as
assemblers, editors, and debuggers. The standard canmands \tthich are available
in the CCP are listed in a followin; section.

The last segment of CP/M is the area called the Transient Program Area
(TPA). The TPA holds programs \tbich are loaded fran the disk under canrnand of
the CCP. Durinq p:ogram editin:J, for example, the TPA holds the CP/M text
editor rrachine code and data areas. Sitnilarly, p:ograms created under CP/M
can be checked out by loadin; and executing these i;rograms in the TPA.

It smuld be mentioned that any or all of the CP/M cani;:onent subsystems
can be "overlayed" by an executinq i;rogram. That is, once a user" s i;rogram is
loaded into the TPA, the CCP, BOOS, and BIOS areas can be used as the
program's data area. A "bootstrap" loader is programmatically accessible
whenever the BIOS J;X)rtion is not overlayed; thus, the user i;rogram need only
branch to the bootstrap loader at the end of execution, and the canplete CP/M
monitor is reloaded fran disk.

It srould be reiterated that the CP/M operating system is partitioned
into distinct mdules, includin; the BIOS J;X)rtion \tbich defines the hardware
envirorment in \rklich CP/M is executin;. Thus, the standard system can be
easily mdified to any non-standard environment by charqin; the paripheral
drivers to handle the rustan system.

36

2. ~TICNAL IESCRIPl'IOO CF CP/M.

The user interacts with CP/M irimarily through the CCP. viich reads and
interprets canmams entered through the console. In general. the CCP
addresses one of sereral disks w:iich are online (the Stamsird system addresses
up to four different disk drives). These disk drives are labelled A. B, c.
am o. A disk is "logged in" if the CCP is currently addressing the disk. In
order to clearly imicate \<ilhich disk is the currently logged disk, the CCP
always iranpts the q>erator with the disk nane followed by the synbol ">"
imicating that the CCP is rea:ly for another canmand. Upon initial start up,
the CP/M system is brought in fran disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the nemory size (in kilobytes) which this CP/M system manages, and
m.m is the CP/M version l'll1TIDE!r. All CP/M systems are initially set to q>erate
in a 16K . memory space, but can be easily reconfigQred to fit any memory size
on the host system (see the M)VCPM transient canmand). Following system
signon, CP/M autanatically lo;Js in disk A, iranpts the user with the symbol
11 A>" (imicating that CP/M is currently addressing disk "A") , and waits for a
canmam. The canmams are implemented at two levels: built-in canmarrls and
transient canmams.

Built-in canmams are a part of the CCP pro;Jram itself, \<ilhile transient
canmams are l~ed into the TPA fran disk am executed. The built-in
camnams are

ERA

DIR

REN

SAVE

Erase specified files.

List file nanes in the directory.

Rename the specified file.

Save nemory contents in a file.

Type the contents of a file on the lo;Jged disk.

Nearly all of the canmams reference a particular file or group of files. The
form of a file reference is specified below.

2.2. FILE REFERENCF.S.

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M. These file references can be either
11 \:l'lambigoous" (ufn) or "ambigoous" (afn). An \:l'lambigoous file reference
uniquely identifies a single file. "'1ile an anbigoous file reference may be

37

satisfied by a nurrber of different files.

File references consist of two parts: the p:imary nane and the secondary
name. Altoough the secondary nane is q:,tional, it usually is generic; that
is, the secondary nane "Af.M," for example, is used to denote that the file is
an assembly language s::>urce file, \J:lile the irirnary nane distinguishes each
particular s::>urce file. The two nanes are separated by a 11

•
11 as soown below:

};)E+1PPJ?PP.SSS

where pppppppp represents the i;c irnary nane of eight d'laracters or less, am
sss is the secondary nane of no l'!Ore than three d'laracters. As nentioned
above, the nane

pm,pppp

is also allowed am is a:iuivalent to a secondary nane consisting of three
blanks. The dlaracters used in si:ecifyirg an unambiguous file reference
cannot cootain arrt of the si;:ecial characters

<>.,;:= ?*[]

while all alphanumerics and ranaining special d'laracters are allowed.

An anbiguous file reference is used for directory search am pattern
matchirg. The form of an ambigoous file reference is similar to an
unambiguous reference, except the symbol "?" may be interspersed throughout
the Ir unary arrl secondary nanes. In various canmands throughout CP/M, the 11 ?11

syrrbol natches any character of a file nane in the "?" p:>sition. Thus, the
ambiguous reference

X?Z.C?M

is satisfied by the tnambiguous file nanes

XYZ.OOM
and

Note that the anbiguous reference

* * •

is a:iuivalent to the anbiquous file reference

????????.???

while

38

PJA:44.IPPP•*
and

*.sss

are abbreviations for

and
pfWPPPP.???

????????.sss

respectively. As an example,

DIR*•*

is interpreted by the CCP as a CCl1ll'llam to list the names of. all disk files in
the directory, Wlile

DIR X.Y

searches only for a file by the name X.Y Similarly, the camnan:I

DIR X?Y.C?M

causes a search for all (unclllbigmus) file naoes on the disk lhich satisfy
this anbigmus reference.

The fbllowiRJ file names are valid mclllbigmus file references:

X

X.Y

XYZ

XYZ.a»t

GMli1A

~-1

As an added cawenience, the ~ogranrner can generally specify the disk
drive nane alon;J with the file nane. In this case, the drive name is given as
a letter A through z followed by a colon (:) • '1'he sp!Cified drive is then
•1ogged in" before the file q;,eration occurs. Thus, the followiRJ are valid
file mrnes with disk nane ~efixes:

A:X.Y

Z :XYZ.a»t

B:XYZ

B:X.A?M

c~

C:*.ASM

It sl'Duld also be noted that all alphabetic lower case letters in file
and drive nanes are always translated to ui;t:>er case men they are ~ooessed by
the CCP.

39

3. SNrrauoo DISKS.

The q;>erator can switch the currently logged disk by typing the disk
drive nane (A, B, C, or D) followed by a colon _(:) Mien the CCP is waiting for
console irput. Thus, the St"qUence of pranpts am camnands smwn below might
occur after the CP/M systen is loaded fran disk A:

16K CP/M VER 1.4

A>DIR List all files on disk A.

SAMPLE AfM

SAMPLE PRN

A>B: SWi tch to disk B.

B>DIR *.AEM List all •AfM• files on B.

B>A: SWi tch back to A.

40

4. THE K>III CP BJIIll'-IN (I)MM.&.NJl;.

The file am device reference for:ms described above can now be used to
fully si;ecify the structure of the built-in C<Jlllllal'ds. In the description
below, assume the followin;1 abbreviations:

ufn

afn

er

mambigoous file reference

ambigoous file reference

carriage return

Further, recall that the CCP always translates lower case characters to UR;>er
case characters internally. Thus, lower case alphabetics are treated as if
they are UR;)er case in camnarx:i runes arx:i file references.

4.1 ERA afn er

The ERA (erase) camnarrl renoves files fran the currently logged-in disk
(i.e., the disk nane currently p:anpted by CP/M treceding the •> ..). The files

which are erased are tmse \1hich satisfy the ambigoous file reference afn.
The followinJ examples illustrate the use of ERA:

ERA X.Y

ERA X.*

ERA *.MM

ERA X?Y.C?M

ERA*•*

ERA B:*.PRN

The file naned x. Y on the currently logged disk
is removed fran the disk directory, arx:I the sp!lce
is returned.

All files with p:imary nane X are renDved fran
the rurrent disk.

All files with secorx:iary nane A9I are removed
fran the cur rent disk.

All files on the current disk mich satisfy the
ambigoous reference X?Y.C?M are deleted.

Erase all files on the current disk (in this case
the CCP pranpts the ca'lSOle with the message

•ALL FIIES (Y/N) ?•
viich requires a Y response before files are
actually removed).

All files on drive B lilich satisfy the ambigoous
reference ????????.PRN. are deleted, irrleperrlently
of the currently logged disk.

41

4.2. DIR afn er

The DIR (directory) canmand causes the nanes of all files \lbich satisfy
the anbigmus file nane afn to be listed at the console device. As a sp!cial
case, the camnard

DIR

lists the files on the rurrently logged disk (the canmard "DIR" is equivalent
to the camnand •om *. ••) • Valid DIR canmards are soo\ffl below.

DIR X.Y

DIR X?Z.C?M

DIR ??.Y

Similar to other CCP canmands, the afn can be p:eceded by a drive nane.
The fbllowi.rg DIR camnarrls cause the selected drive to be a:Jdressed before the
directory search takes place.

DIR B:

DIR B:X.Y

DIR B:*.A?M

If no files can be found on the selected diskette \lbich satisfy the
directory rEquest, then the nessage "NO!' R>tm" is typed at the console.

4.3. REN ufnl=ufn2 er

The Rffl (rename) CCll1l'RaJ'd allows the user to dlan:.3e the runes of files on
disk. The file satisfyirg ufn2 is dlan:.3ed to ufnl. The currently logged disk
is assmed to contain the file to rename (ufnl) • The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user's console
supports this graphic dlaracter. Examples of the REN cc:mmam are

Rffl X. Y:a(J.R The file Q.R is dlan:.3ed to X. Y.

Rffl XYZ .cr»t=XYZ .XXX The file XYZ.XXX is dlan:Jed to XYZ.a:M.

'.ftle cperator can p:ecede either ufnl or ufn2 (or both) by an optional
drive a:Jdress. Given that ufnl is p:eceded by a drive nane, then ufn2 is
assuned to exist on the sane drive as ufnl. Similarly, if ufn2 is r,receded by
a drive nane, then ufnl is assuned to reside on that drive as well. If both
ufnl ard ufn2 are p:ec:eded by drive nanes, then the sane drive must be

42

specified in both cases. The followiffJ R!N canmams illustrate this format.

R!N A:X.ASM • Y.ASM

REN B:ZAP.BAS-ZO'r.BAS

REN B:A.ASM • B:A.BAK

'lhe file Y.ASM is charY;Jed to x.ASM on
drive A.

'lhe file zar.BAS is chaRJed to ZAP.BAS
on drive B.

'!he file A.BAK is renamed to A.ASH on
drive B.

If the file ufnl is already Jresent, the REN camnarr3 will respond with
the error "FIIE EXISTS" and not perform the dlaRJe. If ufn2 does not exist on
the specified diskette, then the messcqe "NOi' FOIH>" is Jr inted at the
console.

4.4. SAVE n ufn er

The SAVE canmand places n peges (256-byte blocks) onto disk fran the TPA
and nanes this file ufn. In the CP/M distribution system, the TPA starts at
100H (hexadecimal), tr.hich is the second page of memory. Thus, if the user's
program occupies the area fran 1008 through 2FFH, the SAVE camnand must
specify 2 pages of memory. The nachine code file can be sti:>sequently loaded
and executed. Examples are:

SAVE 3 X.OOM

SAVE 40 0

SAVE 4 X.Y

O>pies 1008 through 3FFH to x.a»t.

O>pies 1008 through 28FFH to Q (note
that 28 is the page count in 28FFB,
arr3 that 288 = 2*16+8 = 40 decimal).

Copies 1008 through 4FFB to x.Y.

The SAVE canmand can also specify a disk drive in the afn J;X)rtion of the
canmand, as srown below.

SAVE 10 B:ZOT.a»t

4.5. 'IYPE ufn er

O>pies 10 pages (100H through 0AFE11) to
the file ZO'l'. O)M on drive B.

The TYPE canmand displays the contents of the ASCII source file ufn on
the 01rrently logged disk at the console device. Valid TYPE camnands are

TYPE X.Y

43

TYPE X.Put

TYPE XXX

The TYPE canmarrl expands tabs (clt-I characters), assunmirq tab tx>Sitions
are set at e,ery eighth coltmn. The ufn can also reference a drive name as
shown below.

TYPE B:X.PRN The file x.PRN fran drive B is displayed.

44

S. LINE IDITING AND OOl'PUl' CDN'l'R)L.

The CCP allows certain line e:Utin;i f\l'lctions lihile typin;i camnam lines.

rubout

ctl-U

ctl-X

ctl-R

ctl-E

ctl-C

ctl-Z

Delete am echo the last character typed at the
console.

Delete the entire line typed at the CCllSOle.

(Same as ctl-U)

Retype current camna.m line: types a "clean line" fol
lowi.n:J character deletion wi. th rubouts.

Physical em of line: carriage is returned, but line
is not sent mtil the carriage return key is depressed.

CP/M system reboot (warm start)

End ill)ut fran the console (used in PIP am ED).

The control fmctions ctl-P am ctl-S affect console output as stx:>wn below.

ctl-P

ctl-S

Copy all SlDSe:;Juent console output to the currently
assigned list device (see the STAT canmam). output
is sent to both the list device am the console device
ll'ltil the next ctl-P is typed.

Stop the console output temp:>rarily. Program execution
am output continue \tilen the next character is typed
at the console (e.g., another ctl-S). 'l'tlis feature is
used to stop output on high speed consoles, stx:h as
CRl'"s, in order to view a se,;JIDent of output before con
tinuin:J.

Note that the ctl-key se::Juences sh:>wn above are obtained by depressil'¥:J the
control am letter keys simultaneously. FUrther, CCP canmam lines can
generally be up to 255 characters in len;Jth: they are not acted up:>n mtil the
carricge return key is typed.

45

6. T!WiSUNl' CIHIANIS.

Transient camnands are loaded fran the currently logged disk and executed
in the TPA. The transient camnands defined for execution ll'lder the CCP are
shown below. Additional fll'lctions can easily be defined by the user (see the
LOt\D camnand definition).

STAT List the nurri)er of bytes of storage renaining on the
currently logged disk, EXOVide statistical information
about particular files, and display or alter device
assignment.

Om'

PIP

ED

SYSGEN

SUBMIT

DUMP

MJVCPM

Load the CP/M assenbler and assenble the specified
E=Cogram fran disk.

Load the file in Intel "hex" machine code format and
E=Coduce a file in machine executable form which can be
loaded into the TPA (this loaded ?=ogram becanes a
new canmand ll'lder the CCP) •

Load the CP/M debugger into TPA and start execution.

Load the Peripheral Interchange Program for subsequent
disk file and peripheral transfer cperations.

Load and execute the CP/M text editor E=Cogram.

Create a new CP/M system diskette.

Subnit a file of canmands for batch ?=ocessing.

Dump the contents of a file in hex.

Regenerate the CP/M system for a particular rnerrory
size.

Transient camnands are specified in the same manner as built-in canmands, and
additional canmands can be easily defined by the user. As an added
convenience, the transient camnand can be E=Ceceded by a drive nane, \ti'lich
causes the transient to be loaded fran the specified drive into the TPA for
execution. Thus, the canmand

B:STAT

causes CP/M to tenp,rarily "log in" drive B for the a,urce of the srAT
transient, and then return to the original _logged disk for stbsequent
processing.

46

'!he basic transient camnands are listed in detail below.

6.1. STAT er

The STA'1' camnam i;r0\7ides general statistical information about file
storcge am device assigmnent. It is initiated by typing one of the following
forms:

STAT er
STAT •canmam line• er

Special forms of the "canmar¥3 line" allow the current device assignment to be
examined am altered as well. The various canmand lines mich can be
specified are sb:>wn below, with an explanation of each form smwn to the
right.

STAT er

STAT x: er

STAT afn er

If the user types an anpty camnal'Yl line, the.STAT
transient calculates the storcge remainin;J oil all
active drives, and p: ints a nessage

x: R/W, SPACE: nnnK
or

x: R/0, SPACE: nnnK

for each active drive x, mere R/W imicates the
drive may be read or written, aid R/0 indicates
the drive is read only (a drive becanes R/0 by
explicitly setting it to read only, as shown
below, or by inadvertantly c:hm;Jing -diskettes
·without performil'¥J a warm start). '!be space
remaining on the diskette in drive x· is given
in kilobytes by nnn.

If a drive nane is given, then the drive is
selected before the storcge is ocmputed. '.ftlus,
the canmand •STA'1' B:• could be issued mile
logged into drive A, resultin;J in the nessage

BYI'ES REMAIND«; aq B: nnnK

The canmand line can also specify a set of files
to be scanned by STAT. The files mich satisfy
afn are listed in alphabetical order, with stor
cge requirements for each file mder the headil'¥}

RPX:S BY1'S EX D: FILBNME.'l'!P
rrrr btt,K ee d~~ .. sss

mere rrrr is the l'Uli:>er of 128-byte records

47

STAT x:afn er

STAT x:=R/O er

allocated to the file, bbb is the l'I.Ulber of kilo
bytes allocated to the file {bbb=rrrr*l28/1024),
ee is the nmt>er of 16K extensions {ee=bbb/16),
dis the drive name containing the file {A ••• z),
~m-,pppp is the (up to) eight-character JZ' imary
file nane, ard sss is the {up to) three-character
secondary nane. After listing the individual
files, the storage usage is st.mnarized.

As a convenience, the drive name can be given
ahead of the afn. In this case, the specified
drive is first selected, ard the form "STAT afn"
is executed.

This form. sets the drive given by x to read-only,
which remains in effect l.l'ltil the next warm or
cold start takes place. \'alen a disk is read-only,
the messag-e

BDCS ERR CN x: RF.AO cm,y

will appear_ if there is an attempt to write to
the read-only disk x. CP/M waits l.l'ltil a key
is depressed before performing an autanatic warm
start (at '\tbich time the disk becanes R/W).

The STAT canmarrl also allows control CNer the physical to logical device
assignment (see the IOBYI'E function described in the manuals "CP/M Interface
Guide" am "CP/M System Alteration Guide") • In general, there are four
logical peripheral devices \tthich are, at any particular instant, each assigned
to one of several physical peripheral devices. The four logical devices are
named:

CX>N:

ROR:

PW:

I.ST:

'!'he system console device (used by CCP
for canmunication with the q>erator)

'!'he paper tape reader device

'!'he paper tape pll'lch device

'!be output list device

The actual devices attached to any particular canputer system are driven
by sti:>routines in the BIOO p,rtion of CP/M. Thus, the logical RDR: device,
for example, ca.ild actually be a high speed reader, 'D!letype reader, or
cassette tape. In order to allow SDme flexibility in device naning ard
assignment, several physical devices are defined, as shown below:

48

T'lY:

.CR!':

BAT:

UCl:

Pl'R:

ORl:

UR2:

Pl'P:

UPl:

UP2:

LPI':

ULl:

Teletype device (slow speed CCl'lSOle)

Catlx>de rl1:'f td:>e device (high speed CCl'lSOle)

Batch trocessil"M1 (console is current RDR: ,
output goes to current IST: device)

user-defined console

Paper tape reader (high speed reader)

user-defined reader tl

User-defined reader 12

Paper tape pu,ch (high speed punch)

user-defined ptnch tl

user-defined ptl'lch 12

Line p:-inter

user-defined list device tl

It must be enphasized that the physical device nanes may or may not
actually correSEX)nd to devices \lihich the nanes imply. That is, the Pl'P:
device nay be implemented as a cassette write ~ration, if the user wishes.
The exact correSEX)ndence and driviB1 slt>routine is defined in the BIC6 portion
of CP/M. In the standard distribution version of CP/M, these devices
corresp:>nd to their nanes on the MtS 800 develqrnent system.

The i;ossible logical to physical device assignments can be displayed by
typin;J

STAT VAL: er

The STAT p:-ints the IX)ssible values \lbich can be taken on for each logical
device:

(DN. ='rlY: CR!': BAT: UCl:
RDR: = 'rlY: Pl'R: ORl: UR2:
Pm: = 'rlY: Pl'P: UPl: UP2:
IST: = 'rlY: CR!': LPI': ULl:

In eidl case, the logical device soown to the left can take 8rrf of the four
physical assignnents smwn to the right on each line. The current logical to
physical nawi.aj is displayed by typiB1 the ccmnand

STAT IEV: er

49

lllhic:h i;roduces a listing of each logical device to the left, am the current
corresp>minJ physical device to the right. For example, the list might
aR;)ear as follows:

CXJf: - CRr:
R>R: .. tJRl:
P01: • Pl'P:
ISr: - TT!:

The current logical to physical device assigrunent can be dlanged by typing a
STAT canmam of the fonn

· STAT ldl = p.U, ld2 = pd2 , • • • , ldn = pdn er

where ldl. through ldn are logical device nanes, and pdl through pdn are
canpatible physical device nanes (i.e., ldi and pdi appear on the sane line in
the "VM.: • canmam stx,wn above) • The followin;J are valid STAT camnands lfflich
cbaRJe the current logical to physical device assigrunents:

STAT OON:=CRr: er
STAT PQh = TT!: ,IST:=LPI':, H)R:~: er

6.2. A9I ufn er

'11le A9t camnam loads and executes the CP/M 8080 assent>ler. '!he ufn
specifies a s,urce file containing assembly language statements lfflere the
secondary nane is assuned to be ASM, and thus is not ~ified. The following
ASM camnands are valid:

ASIX

The bfo-pass assembler is autanatically executed. If assent>ly errors occur
durinJ the second pass, the errors are i;xinted at the console.

The asseni>ler pr:oduces a file

x.PRN

where x is the pr:iJnary nane specified in the ASM canmand. '11le PBN file
contains a listin;J of the souree tr(:,gram (with ini,edded tab dlaracters if
present in the s,urce pr:ogram), alorq with the madline code generated for each
statement and dia.3nostic error message9;, tf any. The PRN file can be listed

50

at the ccnsole usirq the TYPE C<Jllllal¥:I, or sent to a peripheral device usin;J
PIP (see the PIP canmand structure below). Note also that the P.RN file
contains the original source ~ogran, augmented by miscellaneous assent>ly
information in the leftnDst 16 col\Jllls {progran a:ldresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the
original source file: if the murce file is accidently rm:>Ved or destroyed,
the PRN file can be edited (see the ED operator" s guide) by rem:winJ the
leftnost 16 characters of each line (this can be done by issui1'¥l a si1'¥lle
editor •nacro• camnand). The resultinJ file is identical to the original
source file and can be renamed (REN) fran Fm to ASM for sd::>sequent EditinJ
and assembly. The file

x.HEX

is also p:oduced mich cootains 8080 machine :LclnJuage in Intel •11ex• format
suitable for s\bsequent loadinJ and execution (see the LO\D camnand). For
canplete details of CP/M"'s assembly la1'¥luage p:ogram, see the •CP/M Assent>ler
LanJuage {A91) user"s Guide.•

Similar to other transient canmards, the murce file for assenbly can be
taken £ran an cL.ternate disk by p:efixinJ the assent>ly].an:Juage file nane by a
disk drive nane. Thus, the canmand

A9t B:ALPHA er

loads the assembler £ran the currently logged drive and q,erates up>n the
source p:ogram M,PHA.ASM on drive B. The HEX and PRN files are also placed on
drive B in this case.

6.3. UWl ufn er

'!'he LOAD canmam reads the file ufn, mich is assaned to contain •hex•
format machine code, and p:oduces a mem:,ry ima:je file mich can be
s\ilseguently executed. The file nane ufn is assllDed to be of the form

x.HEX

and thus only the name x need be specified in the ccmnam. 'lbe LO\D camnand
creates a file naned

x.cx»t

which marks it as containinJ machine executable code. '!be file is actually
loa:Jed into mem:,ry am executed wien the user types the file name x
imediately after the p:anptinJ character •>• printed by the CCP.

In general, the CCP reads the name x followirq the p:anptinJ dlaracter
and looks for a blilt-in ftnction name. If no ftnction name is found, the CCP
searc:hes the systan disk directory for a file by the name

51

x.CDM

If found, the machine code is loaded into the TPA, and the p:oqram executes.
Thus, the user need only IOAD a hex file once: it can be subsequently
executed any nuJli:>er of times by simply typing the p:imary name. In this way,
the user can "invent• new canmands in the CCP. (Initialized disks contain the
transient canmaoos as roM files, \tbich can be deleted at the user -s option.)
The operation can take place on an alternate drive if the file name is
prefixed by a drive nane. Thus,

LOM) B:BETA

brings the LOM> program into the TPA ftan the currently logged disk and
operates up,n drive B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as p:oduced by the ASM program, for example)
which be:;}in at 100H, the beginnil'XJ of the TPA. Further, the a::ldresses in the
hex records must be in ascendirxJ order: qaps in t11filled memory regions are
filled with zeroes by the LCW) canmaoo as the hex records are read. 'lllus,
LOru) must be used only for creating CP/M standard 11a:M" files \tihich operate in
the TPA. Programs llhich occupy regions of memory other than the TPA can be
loa::led t11der DD!'.

6.4. PIP er

PIP is the CP/M Peripheral Interchan;Je Program which implements the basic
media conversion operations necessary to load, p:int, punch, COP'/, and canbine
disk files. The PIP program is initiated by typil'¥j one of the following forms

(1) PIP er
(2) PIP •canmand line• er

In both cases, PIP is loaded into the TPA and ·executed. In case (1), PIP
rea::ls canmaoo lines directly fran the console, pranpted with the "* ..
character, t11til an enpty canmand line is typed (i.e., a single carriage
return is issued by the operator) • Each successive canmand line causes mme
media conversion to take place accordirxJ to the rules srown below. Form (2)
of the PIP canmand is equivalent to the first, except that the single canmand
line given with the PIP canmand is autanatically executed,. and PIP terminates
imnediately with no further F,Canptil'¥J of the console for input canmand lines.
The form of eadl camnand line is

destination= sourcetl, sourcet2, ••• , sourcefn er

where "destination" is the file or p:?ripheral device to receive the data, and

52

•murcetl, ••• , s:>urcetn• represents a series of one or nore files or devices
which are ~ied fran left to right to the destination.

Wien multiple files are given in the canma.nd line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an asstllled CP/M
end-of-file character (ctl-Z) at the end of each file (see the O parameter to
override this assmtption). The equal synt,ol (=) can be replaced by a
left-oriented arrow, if your console s~rts this ASCII character, to improve
readability. !Dwer case ASCII alphabetics are internally translated to upper
case to be consistent with CP/M file and device name conventions. Finally,
the total canmand line lergth cannot exceed 255 characters (ctl-E can be used
to force a physical carricqe return for lines tilich exceed the oonsole width).

The destination and s:>urce elements can be mant>iqoous references to CP/M
source files, with or without a p:ecedirg disk drive name. '!bat is, any file
can be referenced with a p:ecedirg drive name (A:, B:, C:, or D:) which
defines the particular drive tilere the file may be obtained or stored. When
the drive nane is not included, the currently logged disk is ass\llled.
Further, the destination file can also appear as one or nore of the s:>.urce
files, in which case the s:>urce file is not altered 1.ntil the entire
concatenation is canplete. If the destination file already exists, it is
rerooved if the canmand line is i:roperly formed (it is not rerooved if an error
condition arises). '!he followirg camnand lines (with explanations to the
right) are valid as input to PIP:

X =Yer

X = Y,Z er

x.ASM=Y.ASM,Z.ASM,FIN.ASM er

NEW.ZO'l' = B:OLD.ZAP er

B:A.U = B:B.V,A:C.W,D.X er

Cbpy to file X fran file Y,
mere X and Y are mant>igoous
file names: Y remains mchm¥;Jed.

Concatenate files Y and Zand
copy to file x, with Y and z
ll'lchm¥;Jed.

Create the file X.ASM fran the
concatenation of the Y, z, and
FIN files with type ASM.

,t,,,e a copy of ow.ZAP fran drive
B to the currently logged disk:
nane the file NFJr.zar.

Concatenate file B.V fran drive B
with c.w fran drive A and o.x.
fran the logged disk: create
the file A.U on drive B.

For 110re convenient use, PIP allows abbreviated canma.nds for transferri~
files between disk drives. The abbreviated forms are

53

PIP x:=afn er

PIP x:=y:afn er

PIP ufn = y: er

PIP x:ufn = y: er

The first form ccpies all files fran the currently loqged disk which satisfy
the afn to the sane file nanes on drive x (x = A ••• Z). The second form is
equivalent to the first, where the rource for the copy is drive y (y = A •••
Z). The third form is equivalent to the canmand "PIP ufn=y: ufn er" which
copies the file given by ufn fran drive y to the file ufn on drive x. The
fourth form is equivalent to the third, "11ilere the rource disk is explicitly
given by y.

Note that the rource and destination disks must be different in all of
these cases. If an afn is specified, PIP lists each ufn "11ilich satisfies the
afn as it is beirg cq:,ied. If a fil~ exists by the same name as the
destination file, it is renoved umn s1.ecessful canpletion of the CC/fl'f, and
replaced by the cq,ied file.

The followif'r:J PIP canmands qive examples of valid disk-to-disk copy
operations:

B:=*.OJM er

A:=B:ZAP.* er

ZAP .ASM=B: er

B:zor.OJM=A: er

B:~.BAS er

B:=A:GA.MMA.BAS er

Copy all files which have the
secoooary nane ''a»t" to drive B
£ran the current drive.

Copy all files "11ilich have the
primary name "ZAP" to drive A
fran drive B.

F.guivalent to ZAP.ASM=B:ZAP.ASM

F.guivalent to B:Zor.CDM=A:ZOl'.(l)M

Same as B:~.~.BAS

Same as B:~.BAS=A:GA""1A.BAS

PIP also allows reference to physical ard logical devices which are
attached to the CP/M system. The device names are the same as given 1.11der the
STAT canmarrl, alon;1 with a I'IJllt>er of s~cially naned devices. The logical
devices given in the STAT canmaoo are

~= {console) , R:>R: (reader) , PON: (punch) , and IST: (list)

while the physical devices are

54

'l"l.Y: (conaole, reader, ptl'ldl, or list)
CRl': (console, or list), tel: (console)
Pl'R: (reader) , URl: (reader) , tJR2: (remer)
Pl'P: (P\l'lch), UPl: (pmdl), UP2:~ (ptl'ldl)
LPI': (list) , ULl: (list)

(Note that the •BAT:• J;ilysical device is not ircluded, since this assignment
is used only to imicate that the RDR: and IB.l': devices are to be used for
console irput/output.)

'lbe K>R, IS1', PUN, and CX. devices are all defined within the BIOO
portion of CP/M, an:1 thus are easily altered for any particular I/0 system.
('lbe current physical device mawin:J is defined by ICBY!'E1 see the "CP/M
Interface Guide" for a discussion of this fmction) • 'lbe destination device
must be capable of receivin:;i data (i.e., data cannot be sent to the pmch) ,

. and the s,urce devices must be capable of generatir¥1 data (i.e., the LST:
device cannot be read).

'lbe cddi tional device runes viich can be used in PIP carrnams are

NUL:

ECF:

INP:

our:

PRN:

Send 48 "nulls" (ASCII e's) to the device
(this can be issued at the end of pmched output).

Send a CP/M end-of-file (ASCII ctl-Z) to the .
destination device (sent autanatically at the
err::l of all ASCII data transfers through PIP).

Special PIP input a>urce viich can be "patched"
into the PIP program itself: PIP gets the input
data character-by-character by CALLi~ location
103H, with data returned in location 109H (parity
bit must be zero).

Special PIP output destination viich can be
patched into the PIP program: PIP CALLs location
106H with data in register C for each character
to transmit. ·Note . that locations 109H through
lFFB of the PIP memory image are not used an:1
can be r£Placed by special purpose drivers usi~
DOI' (see the t>Dl' operator's manual).

Same as LST: , except that tabs are expanded at
f/Nery eighth character y;x,sition, lines are
nmbered, arr3 page ejects are inserted f!Nery 60
lines, with an initial eject (same as [tBnp]) •

Pile an:1 device nanes can be interspersed in the PIP ccmnands. In each
case, the specific device is read trrtll em-of-file (ctl-Z for ASCII files,
arr3 a real err::l of file for nai-ASCII disk files) • Data fran each device or
file is cmc:atenated fran left to right mtil the last data 9Jurce has been

55

read. The destination devi-ce or file is written usin;J the data fran the
source files, am an eoo-of-file dlaracter (ctl-Z) is a~nded to the result
for ASCII files. Note if the destination is a disk file, then a temporary
file is created ($$$ secondary nane) t.hich is chan:ted to the actual file name
only up:>n stecessful canpletion of the copy. Files with the extension •a::»t•
are always assumed to be non-ASCII.

The cq,y q,eration can be aborted at any time by depressing any key on
the keyboard (a rubout suffices). PIP will respooo with the message "ABJRl'ED•
to iooicate that the q,eration was not canpleted. Note that if any operation
is aborted, or if an error occurs durio:J i;rocessing, PIP reroves any peniin;J
canmaoos which \tolere set up \ibile usinq the SUBMIT canmand.

It shJuld also be noted that PIP performs a sp!Cial fmction if the
destination is a disk file with type "HEX" (an Intel hex formatted machine
code file), am the source is an external peripheral device, such as a i;aper
tape recrler. In this case, the PIP program checks to ensure that the.•source
file contains a p:operly formed hex file, with legal hexadecimal values aoo
checkst1n records. When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action. It is usually
sufficient to open the reader aoo rertm a section of the tape (pull the tape
back about 20 inches). When the tape is ready for the re-read, type a single
carria;Je return at the console, aoo PIP will attempt another read. If the
tape p,sition cannot be ixoperly read, simply continue the read (by typing a
return following the error messcge) , aoo enter the record manually with the ED
program after the disk file is constructed. For convenience,. PIP allows the
end-of-file to be entered fran the console if the source file is a ll>R:
device. In this case, the PIP program reads the device aoo nonitors the
keyboard. If ctl-Z is typed at the keyboard, then the read cperation is
terminated normally.

Valid PIP canmarrls are shown below.

PIP IST: = X.PRN er

PIP er

*CDN:=X.ASM,Y.ASM,Z.ASM er

*X.HEX=CX:N:,Y.HEX,PrR: er

*er

56

Copy x. Pm to the LST device am
terminate the PIP program.

Start PIP for a sequence of
camnaoos (PIP pranpts with "*").

Concatenate three ASM files and
cq>y to the 00N device.

Create a HEX file by readirq the
CDN (tmtil a ctl-Z is typed) , fol
lowed by data fran Y.HEX, follO\to'ed
by data fran Pl'R tmtil a ctl-Z is
encotmtered.

Sin:,Jle carriage return stops PIP.

PIP PlN:=NUL:,X.ASM,ECF:,NUL: er Send 40 nulls to the p.nch device,
then cqJ'/ the x.ASM file to the
pmch, followed by an w-of-file
(ctl-Z) and 40 nore ~l dlarac
ters.

The user can also specify one or nore PIP parameters, enclosed in left
and right square brackets, separated by mro or nore blanks. F.ach parameter
affects the cq>y operation, and the enclosed list of parameters must
immediately follow the affected file or device. Generally, each parameter can
be followed by an q>tional decimal integer value (the S and O parameters are
exceptions) • The valid PIP parameters are listed below.

B Block node transfer: data is buffered by PIP until an ASCII
x-off character (ctl-S) is received fran the s:>urce device.
This allows transfer of data to a disk file fran a cootinuous
recdirrJ device, such as a cassette reader. Upon receipt of
the x-of f, PIP clears the disk buffers and returns for nore
irt>ut data. The amount of data which can be buffered is de
perrlent up:m the nenory sim of the tx>st system (PIP will
issue an error message if the buffers OU'erflow).

Delete characters which extend past collltll n in the transfer
of data to the destination fran the character s:>urce. This
parameter is used nost often to truncate loog lines which are
sent to a (narrow) ·printer or console device.

E F.cho all transfer operations to the oonsole as they are being
performed.

F Filter form feeds fran the file. All i.niledded form feeds are
renoved. The P parameter can be used simultaneously to
insert new form feeds.

e Bex data transfer: all data is checked for p:oper Intel hex
file format. Non-essential dlaracters between hex records
are removed durirq the COf1'f C4;)eration. The coosole will be
pranpted for corrective action in case errors occur.

I Ignore 11 :0011 records in the transfer of Intel hex format
file (the I parameter autanatically sets thee parameter).

L Translate UR?er case alp~tics to lower case.

N Md line nmbers to each line transferred to the destination
startirq at one, and incrementir¥J by 1. IeaiirrJ zeroes are
suppressed, and the nunt>er is followed by a colon. If N2
is specified, then lemirq mroes are inclooed, am a tab is
inserted followirrJ the l'Ulber. The tab is expanded if T is

57

set.

O Cl:>ject file (non-ASCII) transfer: the normal CP/M end of
file is ignored.

Pn Include page ejects at every n lines (with an initial page
eject). If n = 1 or is excluded altogether, page ejects
OCOJr every 68 lines. If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted.

Qsfz ()lit copying fran the s:,urce device or file "lhen the
strings (terminated by ctl-Z) is encountered.

sstz Start copying fran the s:,urce device "lhen the string s is
encountered (terminated by ctl-Z). The S and O parameters
can be used to "abstract• a particular section of a file
(such as a slt>routine). The start and quit strings are al
ways ·inclooed in the copy cperation.

NOrE - the strirqs following the s and q parameters are
translated to upper case by the CCP if form (2) of the
PIP camnand is used. Form (1) of the PIP invocation, lDw
ever, does not perform the autanatic ur;per case translation.

(1) PIP er
(2) PIP •canmand line• er

Tn Expand tabs (ctl-I characters) to every nth coll.111'1 during the
transfer of characters to the destination fran the s:>urce.

U Translate la.ier case alphabetics to ur;per case during the
the copy cperation.

V Verify that data has been eopied correctly by rereadirq
after the write cperation (the destination must be a disk
file).

z Zero the parity btt·ort il'IXlt for each ASCII character.

'l1le following are vaM'd PIP Wiiiimda llhich· specify parameters in the file
transfer:

PIP x.ASM=B: {v] er

PIP LP1':=X.A5M[nt8u] er

CDF:/ X.ASM fran drive B to the current drive
and verify that the data was i;:r:operly copied.

CDF:/ x.ASM to the LPr: device: nunt>er each
line, expand tabs to every eighth colllll'l, and
translate la.ier case alphabetics to UR;>er
case.

58

PIP Pm:=X.HEX[i] ,Y.ZOT[h] er First copy X.HEX to the PW: device am
ignore the trailin;J ":00" record in x.HEX:
then continue the transfer of data by reading
Y.ZOT, which contains hex records, includin;J
arrt ":00" records which it contains.

PIP x.LIB = Y.A94 [sSJBRl:tz qJMP L3'tz J er Copy fran the file Y.ASM

PIP PRN:=X.ASM[p50]

6.5. ED ufn er

into the file X.LIB. Start the copy \tlhen the
strin;J "SJBRl:" has been found, am quit copy
irg after the strin;J "JMP L3" is encountered.

Send x.ASM to the IBT: device, with line num
bers, tabs exparded to f!Nery eighth coll:1111'1,
ard page ejects at e,ery 50th line. Note that
nt8p60 is the assll'lled parameter list for a PRN
file: p50 a11errides the default value.

'Dle ED program is the CP/M system context editor, \tlhich allows creation
and alteration of ASCII files in the CP/M environment. Canplete details of
operation are given the ED user's manual, "ED: a Context F.ditor for the CP/M
Disk System." In general, ED allows the operator to create am operate upon
source files \tlhich are organized as a sequence of AOCII characters, separated
by end-of-line characters (a carriage-return line-feed sequence). 'Dlere is no
practical restriction on line len;Jth (no sirgle line can exceed the size of
the workirg nenory), \tlhich is instea1 defined by the nunt>er of characters
typed between er' s. The ED program has a n.nnber of canmands for character
strin;J searchin;J, replacenent, and insertion, \tlhich are useful in the creation
and correction of programs or text files mder CP/M. Altoough the CP/M has a
limited nenory work st:ace area (approximately 5000 characters in a 16K CP/M
system), the file size \llhich can be edited is not limited, since data is
easily "paged" through this work area.

Upon initiation, ED creates the specified EOurce file, if it does not
exist, am opens the file for acx:ess. The progranuoer then •a~nds" data fran
the a:>urce file into the work area, if the EOurce file alrecdy exists (see the
A canmam), for editin::J. The a~nded data can then be displayed, altered,
and written fran the work area back to the disk (see the W canmand).
Particular IX)ints in the program can be autanatically pl<Jed am located by
context (see the N canmam) , allowirg easy acx:ess to · particular IX)rtions of a
large file.

Given that the q>erator has typed

ED X.ASM er

59

the ED program creates an intermediate wrk file with the nane

x.$$$

to oold the edited data durirq the ED nm. Upon canpletion of ED, the x.ASM
file (original file) is renamed to x.BAK, and the edited wrk file is renamed
to x.AS-t. Thus, the x.BAK file contains the original (unedited) file, and the
X.ASM file contains the newly edited file. 'lhe operator can always return to
the J;Cevious version of a file by renovin:J the nost recent version, and
renamirg the p:evioos version. S~se, for example, that the current X.AS-t
file was im{roperly edited: the sE:guence of CCP camnand soown below \«)Uld
reclaim the backup file.

DIR X.*

ERA X.ASM

REN X.ASM=X.BAK

Check to see that BAK file
is available.

Erase nost recent version.

Rename the BAK file to ASM.

Note that the operator can abort the edit at any i;:oint (reboot, i;:ower failure,
ctl-C, or Q canmarx:l) witoout destroyin:J the original file. In this case, the
BAK file is not created, and the original file is always intact.

The ED program also allows the user to "pin:J-pon:J" the s:>urce and create
backup files between two disks. The form of the ED camnarx:l in this case is

ED ufn d:

where ufn is the nane of a file to edit on the currently logged disk, and d is
the nane of an alternate drive. The ED program reads and irocesses the s:>urce
file, and writes the new file to drive d, usirq the name ufn. Upon canpletion
of irocessin:J, the original file beccmes the backup file. 'lhus, if the
operator is crldressin:J disk A, the followin:J eanmand is valid:

ED X.AS-t B:

'1ilich edits the file X.AS-t on drive A, creatir¥J the new file X.$$$ on drive
B. Upon canpletion of a successful edit, A:X.ASM is renamed to A:X.BAK, and
B:X.$$$ is renamed to B:X.ASM. For user convenience, the currently logged
disk becanes drive B at the end of the edit. Note that if a file by the name
B:X.AS-t exists before the editin:J begins, the message

FILE EXISTS

is J;C inted at the console as a irecaution ~a inst accident! y destroying a
source file. In this case, the operator must first ERAse the existing file
and then restart the edit q,eration.

60

Similar to other transient camnams, editiBJ can take place on a drive
different fran the rurrently logged disk by p:ecedin;J the s:>urce file name by
a drive nane. Examples of valid edit requests are smwn below

ED A:X.ASM

ED B:X.ASM A:

6.6. SYSGEN er

B:Jit the file x.ASM on drive A., with
new file am backup on drive A.

B:Jit the file X.ASM on drive B to the
tenp,rary file X.$$$ on drive A. 01
termination of editir¥J, charqe X.ASM
on drive B to x.BAK., am dlarqe x.$$S
on drive A to x.ASM.

The SYSGEN transient canmand allows generation of an initialized diskette
containin;J the CP/M operatir¥J systen. The SYSGEN program p:anpts the console
for camnams., with interaction as smwn below.

SYSGEN er Initiate the SYSGEN program.

SYSGEN VERSIOO m.m SYSGEN sign-on message.

SOORCE DUVE NAME (OR RE'1URN TO SKIP)

SOORCE 00 x THEN T'fPE RE'1URN

FUl.CTIOO CDMPLETE

Respooo with the drive name (one
of the letters A., B., c, or D) of
the disk containir¥J a CP/M sys
ten: usually A. If a copy of
CP/M already exists in mesoory,
due to a KNCPM eCllllla1'¥i, type a
er only. Typir¥J a drive name
x will cause the response:

Place a diskette containir¥J the
CP/M operatir¥J system on drive
x (xis one of A, B, C., or D).
Answer with er \lilen ready.

Systen is copied to mesoory.
SYSGEN will then p:anpt with:

DESTINATIOO DUVE NAME (OR RE'1URN TO RmOOI')

61

If a diskette is bein;J ini
tialized., place the new disk
into a drive am answer with
the drive name. Otherwise, type
a er am the system will reboot
fran drive A. Typin;J drive name
x will cause SYSGEN to l;ranpt

with:

DESTINATICN CN x THEN TYPE RElllRN Place new diskette into drive
x1 type return 'Nhen ready.

New diskette is initialized
in drive x.

The "°IESTINATICN" i;:r:anpt will be repeated ll'ltil a single carriage return is
typed at the console, so that nDre than one disk can be initialized.

Up:>n canpletion of a su:::cessful system generation, the new diskette
contains the q,eratin:} system, aoo only the built-in canmands are available.
A factory-fresh IBM-canpatible diskette appears to CP/M as a diskette with an
empty directoryi therefore, the q,erator must copy the appropriate COM files
fran an existir¥J CP/M diskette to the newly constructed diskette using the PIP
transient.

The user can c~y all files £ran an existing diskette by typing the PIP
canmand

PIP 8: = A: *.*[v] er

which c~ies all files fran disk drive A to disk drive 8, aoo verifies that
each file has been ccpied correctly. The name of each file is displayed at
the console as the cc:x:,y q,eration i;:r:oceeds. . .

It smuld be noted that a SYSGEN does not destroy the files 'Nhich already
exist on a diskette1 it results only in construction of a new q,erating
system. Further, if a diskette is beir¥J used only on drives B through D, aoo
will never be the source of a bootstrap q,eration on drive A, the SYSGEN need
not take place. In fact, a new diskette needs absolutely no initialization to
be used with CP/M.

6.7. SUBMIT ufn parrntl ••• parmtn er

The SJBMIT canmand allows CP/M canmands to be batched toqether for
autanatic i;:r:ocessin::J. The ufn given in the SUBMIT canmand must be the
filename of a file 'ltlich exists on the currently logged disk, with an assumed
file type of "SUB." The SUB file cootains CP/M i;:r:ototyp! canmarrls, with
possible parameter stt>stitution. The actual parameters parmtl ••• pa.rmtn are
substituted into the JXOto~ canmands, and, if no errors occur, the file of
substituted canmaoos are i;:r:ocessed sequentially by CP/M.

62

'1'he izototype canmand file is created usinJ the ED izogram, with
interspersed•$• paraneters of the fom

$1 $2 $3 ••• $n

correspomiRJ to the rmt>er of actual paraneters llhich will be included men
the file is slhni tted for execution. tllen the SUBMIT transient is executed,
the actual parameters parmtl ••• parmtn are paired with the formal paraneters
$1 ••• $n in the izototype canmams. If the l'IJll'ber of formal am actual
parame~rs does not correSJ;X>m, then the st:tmit fmction is aborted with an
error nessage at the console. The aJBMIT fmction creates a file of
sd:>stituted camnams with the nane

$$$.SUB

on the logged disk. When the systan reboots (at the termination of the
SUBMIT), this camnam file is read by the CCP as a s:>urce of irl>ut, rather
than the coosole. If the SUBMIT fmction is performed on any disk other than
drive A, the camnards are not izocessed mtil the disk is inserted into drive
A am the systan reboots. Further, the user can abort caamand irocessirr;J at
any time by typiRJ a rubout l'ilen the camtand is read am edloed. In this
case, the $$$.SUB file is renoved, am the slt>sequent canmams cane fran the
console. Camnard irocessiRJ is also aborted if the CCP detects an error in
any of the camnards. Prograns \tbich execute mder CP/M can abort irocessirr;J of
canmand files men error conditions occur by simply erasiRJ any existirr;J
$$$.SUB file.

In order to introdlX'!e dollar signs into a SUBMIT file, the user may type
a •$$• which re3lX'!es to a sirgle •$11 within the CCJ1111Bm file. Further, an
up-arrow syrrt,ol """ may trecede an alphabetic character x, mich tzoduces a
siRJle ctl-x character within the file.

The last canmam in a SUB file can initiate another SUB file, thus
allowiRJ chained batch ~s.

SUR.X)se the file ASMBL.SUB exists on disk am caitains the p:ototype
C<J'IIIIBmS

AEM $1
DIR $1.*
ERA *.BAI<
PIP $2:•$1.PRN
ERA $1.P.RN

aJBMIT A9mI, X P.RN er

is issued by the q>erator. The SUBMIT p:ogrm reads the ASMBL.SOB file,
sd:>stitutiRJ •x" for all occurrences of $1 am •P.RN" for all occurrences of
$2, resultiRJ in a $$$.SUB file oontainiRJ the coamands

63

A9I X
DIR X.*
ERA *.BAK
PIP PRN:=X.PRN
ERA X.PRN

~ich are executed in sequence by the CCP.

The SUBMIT fi.nction can access a SUB file llhich is on an alternate drive
by i;recedirg the file nane by a drive nane. Subnitted files are only acted
up:m, ho~er, when they appear on drive A. Thus, it is p,ssible to create a
subnitted file on drive B llhich is executed at a later time llhen it is
inserted in drive A.

6.8. IlltP ufn er

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form. The file contents are listed sixteen bytes at a time,
with the absolute byte a:idress listed to the left .of each line in
hexadecimal. IDng typeouts can be aborted by pushing the rubout key during
printout. (The murce listirq of the DUMP program is given in the "CP/M
Interface Guide• as an example of a }Xogram written for the CP/M environment.)

6.9. MJVCPM er

The MJVCPM i;rogram allows the user to reconfigure the CP/M system for any
particular rremory size. Two ~tional parameters may be used to indicate (1)
the desired size of the new system and (2) the disp,sition of the new system
at p:ogram termination. If the first parameter is anitted or a 11

•• is given,
the MJVCPM };Cogram will reconfigure the system to its maximlln size, based up:,n
the kilobytes of contigoous RAM in the oost system (starting aat 0000H) • If
the second parameter is anitted, the system is executed, but not permanently
recorded: if "*" is given, the system is left in memory, ready for a SYSGEN
operation. The MJVCPM i;rogram relocates a nenory image of CP/M and places
this image in memry in i;reparation for a system generation ~ration. The
canmand fonns are:

KNCPM er Relocate and execute CP/M for manage
ment of the current meroory configura
tion (memory is examined for contigu
ous RAM, starting at 100H). Upon can
pletion of the relocation, the new
system is executed but not permanently
recorded on the diskette. The system
which is constructed contains a BIOS
for the Intel MIS 800.

64

KJV'CPM n er

KJ\TCPM * * er

KJVCPM n * er

The canmand

KJVCPM * *

Create a relocated CP/M system for
maNqement of an n kilobyte system (n
must be in the rm:1e 16 to 64), am
execute the system, as described above.

Construct a relocated memory image for
the current memory configuration, but
leave the memory image in memory, in
preparation for a SYSGEN operation.

Construct a relocated memory image for
an n kilobyte memory system, am leave
the memory image in preparation for a
SYSGEN operation.

for example, constructs a new version of the CP/M system am leaves it in
memory, rea:ly for a SYSGEN operation. The message

RF.ADY FOR "SYSGEN" OR
"SAVE 32 CPMxx.a::>M"

is trinted at the console up:m canpletion, \tihere xx is the current memory size
in kilobytes. The operator can then type

SYSGEN er Start the system generation.

SOORCE IRIVE NAME (OR RETURN 'IO SKIP) Respond with a er to skip
the CP/M read operation since the system
is already in memory as a result of the
previous tO/CPM operation.

DESTINATIOI IRIVE NAME (OR RElURN T0 REBOOl')
Respond with B to write new system
to the diskette in drive B. SY&;EN
will pranpt with:

DESTINATIOO 00 B, THEN TfiJE RETURN
Ready the fresh diskette on drive
B am type a return \tihen ready.

Note that if you respond with "A" rather than •s• above, the system will be
written to drive A rather than B. SYSGEN will continue to type the pranpt:

DESTINATIOO IRIVE NAME (OR RETURN 'IO REBX7r)

mtll the operator responds wi. th a sio;Jle carria:.Je return, llhich stops the

65

SYs;BN program with a systan reboot.

The user can then go through the reboot p:ocess with the old or new
diskette. Instea:i of t:erfor:mirq the SYS:;EN ot:eration, the user could have
typed

SAVE 32 CPMxx.cnt

at the canpletion of the MJVCPM fti1ction, w:iich l«)Uld place the CP/M memory
image on the OJrrently logged disk in a form which can be "pstched." This is
necessary when cperatiBJ in a non-standard environnent w:iere the BICS must be
altered for a particular i:eripheral device configuration, as described in
the"CP/M System Alteration Guide."

Valid KJVCPM canmards are given below:

KJVCPM 48 er

KJVCPM 48 * er

KJVCPM * * er

Construct a 48K verskon of CP/M and start
execution.

Construct a 48K version of CP/M in p:epara
tion for t:ermanent recordiBJ, resp:,nse is

RF.ADY EOR "SYSGEN" OR
"SAVE 32CPM48.cnt"

Construct a maximun memory version of CP/M
and start execution.

It is im'[X)rtant to note that the newly created system is serialized with
the runber attached to the original diskette am is stbject to the conditions
of the Digital Research Software LicensiBJ ~reement.

66

7. BOOS ERIOR fESSAGES.

There are three error situations viich the Basic Disk Operatirq System
intercepts during file processsing. Nlen one of these conditions is detected,
the BDOS prints the nessage:

BDOS ERR 00 x: error

\fflere xis the drive nane, and "error" is one of the three error nessages:

BAD SECroR
SELEC!'
RF.AD ONLY

The "BAD SECIOR" nessage iooicates that the disk controller electronics
has detected an error condition in reading or writing the diskette. '!'his
condition is generally due to a malfmctioning disk controller, or an
extremely worn diskette. If you find that your system reports this error rrore
than ooce a nonth, you soould d:leck the state of your controller electronics,
and the condition of your nedia. You may also encounter this condition in
rea:Ung files generated by a controller J;roduced by a different manufacturer.
Even toough controllers are claimed to be IBM-canpatible, one of ten finds
small differences in recording formats. The MtS-800 controller, for example,
requires two bytes of one's followin:J the data CRC byte, viich is not required
in the IBM format. As a result, diskettes generated by the Intel MIS can be
reed by alrrost all other IB.M-canpatible systems, lfflile disk files generated on
other marufacturer 's e:iuipnent will produce the "BAD SECIOR" nessage \fflen read
by the MtS. In any case, recovery fran this condition is accanplished by
typing a ctl-C to reboot (this is the safest!), or a return, \tlich simply
ignores the bed sector in the file q,eration. Note, oowever, that typing a
return nay destroy your diskette integrity if the q,eration is a directory
write, so make sure you have erleguate backups in this case.

The "SELEC!'" error occurs \tlen there is an attempt to erldress a drive
beyond the A through D range. In this case, the value of x in the error
message gives the selected drive. The system retxx>ts following any input fran
the console.

The "RF.AD ONLY" nessage occurs \lhen there is an attempt to write to a
diskette \lhich has been designated as read-only in a SEAT canmand, or has been
set to rea:1-only by the BDOS. In general, the q;,erator soould reboot CP/M
either by using the '1Brm start procedure (ctl-C) or by performin:J a cold start
whenever the diskettes are d:langed. If a d:langed diskette is to be read but
not written, BOOS allows the diskette to be d:lao;Jed without the warm or cold·
start, but internally marks the drive as read-only. The status of the drive
is sli>se:iuently d:langed to read/write if a warm or cold start oa=urs. Upon
issuin:J this nessage, CP/M waits for irput fran the console. An autanatic
warm start takes place followin:J artf il'l)ut.

67

8. OPERATICN <:£ CP/M CN THE Mm.

This section gives q,erating procedures for using CP/M on the Intel MIS
microcanputer develO[Xtlent system. A basic knowledge of the MtS hardware and
software systems is assumed.

CP/M is initiated in essentially the sane manner as Intel's ISIS
operatir¥1 system. The disk drives are labelled 0 through 3 on the Mil>,
correS?)ooin:} to CP/M drives A through D, respectively. The CP/M system
diskette is inserted into drive 0, aoo the roor and RF.SE!' switches are
depressed in sequence. The interrupt 2 light slDuld go on at this p:>int. The
space bar is then depressed on the device \rilich is to be taken as the system
console, and the light smuld go rut (if it does not, then check camections
and baud rates). The 0001' switch is then turned off, and the CP/M signon
message smuld appear at the selected console device, followed by the "A>"
system p:anpt. The user can then issue the various resident and transient
canmaoos

The CP/M system can be restarted (warm start) at any time by pushing the
mr 0 switch on the front panel. The built-in Intel ROI monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except \rihen
operatin::J tnder DOI', in \tilich case the DOI' program gets control instead.

Diskettes can be ranoved fran the drives at any time, and the system can
be shut dCM'l durin;J ~ration witmut affecting data integrity. Note,
however, that the user must not remove a diskette and replace it with another
wi trout rebootin;J the system (cold or warm start) , lllless the inserted
diskette is "recrl only."

DJe to hardware h~-ups or nalflllctions, CP/M may type the message

BDa:3 EBR CN x: BAO SECroR

where xis the drive \rilich has a permanent error. This error rray occur t.hen
drive doors are q;,ened aoo closed randanly, followed by disk q,erations, or
may be due to a diskette, drive, or controller failure. The user can
optionally elect to ignore the error by typing a single return at the
console. The error nay prodtce a bad data record, requiring re-initialization
of up to 128 bytes of data. The q:>erator can reboot the CP/M system and try
the q;,eration cgain.

Termination of a CP/M session requires no special action, except that it
is necessary to ranove the diskettes before turning the p::>wer off, to avoid
randan transients \rihich often nake their way to the drive electronics.

It smuld be noted that factory-fresh IBM-canpatible diskettes soould be
used rather than diskettes t,,,hich have previously been used with any ISIS
version. In particular, the ISIS "FOR-!AT.. q;,eration iroduces non-standard
sector nunt>ering throughout the diskette. This non-standard nurrbering
seriously degrcrles the performance of CP/M, and will q,erate noticeably slower

68

than the distribution version. If it becomes necessary to reformat a diskette
(which sh:>uld not be the case for standard diskettes) , a i:rogram can be

written tnder CP/M \\bich causes the MIS 800 controller to reformat with
sequential sector nunbering (1-26) on each track.

--Note: "MIS 800" arrl "ISIS" are r~istered trademarks of Intel Corporation.

69

w'

CP/M ASSEMBLER (ASM): USER'S GUIDE

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

CP/M ASSEMBLER (ASM): USER'S GUIDE

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties .with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

Table Of Contents

CP/M Assembler (ASM): User's Guide

1. lntroductlon •••••••••••••••••••••••••••••• 71
2. Program Format••••••••••••••••••••••••••••72
3. Forming The Operand ••••••••••••••••••••••• 74

3.1 Labels ••••••••••••••••••••••••••••••• 74
3.2 Numeric Constants •••••••••••••••••••• 74
3.3 Reserved Words •••••••••••• ~ •••••••••• 75
3.4 String Constants ••••••••••••••••••••• 76
3.5 Arithmetic and Logical Operators ••••• 76
3.6 Precedence Of Operators •••••••••••••• 77

4. Assembler Directives •••••••••••••••••••••• 78
4.1 The ORG Directive •••••••••••••••••••• 78
4.2 The END Directive••••••••••••••••••••79
4.3 The EQU Directive •••••••••••••••••••• 79
4.4 The SET Di rective •••••••••••••••••••• 80
4.5 The IF And ENDIF Directives •••••••••• 80
4.6 The DB Directive ••••••••••••••••••••• 81
4.7 The ON Directive ••••••••••••••••••••• 82

5. Operation Codes ••••••••••••••••••••••••••• 82
5.1 Jumps, Cal Is And Returns ••••••••••••• 83
5.2 lnmediate Operand lnstructions ••••••• 84
5.3 Increment and Decrement

lnstructions ••••••••••••••••••••••••• 84
5.4 Data Movement lnstructlons ••••••••••• 84
5.5 Arithmetic Logic Unit Operations ••••• 85
5.6 Control lnstructions ••••••••••••••••• 86

6. Error Messages •••••••••••••••••••••••••••• 86
7. A Sa111>le Sesslon •••••••••••••••••••••••••• 87

CP/M Assenbler USer 's Guide

1. Ilf1'R){l£l'ICN.

'l'he CP/M assemler reads assenbly language !Dllrce files fran the diskette,
and i;coduceS' 8080 madline language in Intel hex format. 'ihe CP/M assent>ler is
initiated by typi1¥J

A9I filename
or

A9I filename .parms

In both cases, the assenbler assl.llles there is a file on the diskette with the
name

filename .ASM

which contains an 8080 assent>ly language s:>urce file. 'lhe first and second
forms smwn above differ only in that the second form allows IBrameters to be
passed to the assenbler to control s:>urce file access and hex and !rint file
destinations.

In either case, the CP/M assenbler loads, and prints the nessage

CP/M ASSEMBLER VER n.n

where n.n is the airrent version nmber. In the case of the first CCIIIDaOO,
the assenbler reads the s:>urce file with asst.Jned file type "ASM .. and creates
two output files

filename .HEX
and

filename.PRN

the •HEX• file contains the nadline code corre5P>ndio:J to the original Jrogram
in Intel hex format, and the 11PRN" file contains an annotated listing stx>wio:J
generated madline code, error flags, and s:>urce lines. If errors occur durio:J
translation, they will be listed in the PRN file as well as at the console

'l'he second canmand form can be used to redirect input and ootput files
fran their defaults. In this case, the "parms• ix>rtion of the camand is a
three letter group -.mich s~cifies the origin,. of the s:>urce file, the
destination of the hex file, arrl the destination of the ~int file. 'lbe form
is

filename.plp2p3

liftlere pl, p2, arrl p3 are single letters

pl: A,B, ••• , Y designates the disk name llilich contains

7 1

p2: A,B,

z
p3: A,B,

X
z

Thus, the camnaoo

As-t X.AAA

••• , y

••• , y

the source file
designates the disk name which will re
ceive the hex file
skips the generation of the hex file
designates the disk name which will re
ceive the J;Xint file
places the listing at the console
skips generation of the print file

iooicates that the source file {X.ASM) is to be taken fran disk A, and that
the hex (X.HEX) and p-.-int (X.PRN) files are to be created also on disk A.
This form of the camnand is implied if the asserrbler is run fran disk A. 'lllat
is, given that the cperator is currently crldressing disk A, the above cooniand
is equivalent to

As-tX

The camnaoo

As-t X.ABX

indicates that the source file is to be taken fran disk A, the hex file is
placed on disk B, aoo the listing file is to be sent to the console. 'llle
canrna.oo

As-t x.szz

takes the source file fran disk B, and skips the generation of the hex aoo
print files (this canrnand is useful for fast execution of the assenbler to
check J;Xogram syntax).

The source p-.-ogram format is canpatible with both the Intel 8080 assenbler
(macros are not currently implemented in the CP/M assenbler, oowever) , as well
as the Processor Technology software Package n assenbler. That is, the CP/M
assent>ler accepts source E;rograms written in either format. There are certain
extensions in the CP/M asserrbler which make it somewhat easier to use. 'lllese
extensions are described below.

2. PRO;RAM FO~T.

An assent>ly language }Xogram acceptable as input to the assenbler consists
of a seqt.Ence of statements of the form

linet label operation operand :comment

\tihere any or all of the fields may be present in a P3rticular instance. Fach

72

"embly language statement is terminated with a carriage return and line feed
(the line feed is inserted autanatically by the ED program), or with the
character "!" which is a treated as an end-of-line by the assenbler (thus,
multiple assenbly language statements can be written on the same physical line
if separated by exclaim synbols).

The line# is an optional decimal integer value representing the source
program line nunber, which is allowed on any source line to maintain
canpatibili ty with the Processor Technology format. In general, these line
nunbers will be inserted if a line-oriented editor is used to construct the
original 1;rogram, arrl thus ASM ignores this field if present.

or

The label field takes the form

identifier

identifier:

and is optional, except where noted in particular statement types. '!he
identifier is a sa:;tuence of alphanumeric characters (alphabetics and nurrt>ers),
where the first cnaracter is alphabetic. Identifiers can be freely used by
the programmer to label elements such as program steps and assenbler
directives, but cannot exceed 16 characters in length. All cnaracters are
significant in an identifier, except for the errbedded dollar synbol ($) which
can be used to improve readability of the name. Further, all lower case
alphabetics becane are treated as if they were lJR)er case. Note that the ":"
following the identifier in a label is optional (to maintain canpatibili ty
between Intel and Processor Technology). '1hus, the followir¥3 are all valid
instances of labels

X
x:
XlY2

xy
yxl:
Xlx2

long$name
longer$named$data:
x234$5678$9012$3456:

'!he operation field contains either an assenbler directive, or pseudo
operation, or an 8080 machine operation code. '1he pseudo operations and
machine operation codes are described below.

The operand field of the statement, in general, contains an expression
formed out of constants and labels, along with arithmetic and logical
operations on these elements. Again, the canplete details of properly formed
expressions are given below.

The canment field contains arbitrary cnaracters following the ":" synt>ol
until the next real or logical end-of-line. 'lhese cnaracters are read,
listed, arrl otherwise ignored by the assent>ler. In order to maintain
canpatability with the Processor Technology assent>ler, the CP/M assenbler also
treat statements \tlich begin with a ''*" in column one as canment statements,
which are listed arrl ignored in the assenbly p:ocess. Note that the Processor

73

Technology asserrbler has the side effect in its q:,eration of ignoriBJ the
characters after the q:,erand field has been scanned. '!his causes an ant>iguous
situation ~en attempting to be cani;atible with Intel "s language, since
arbitrary expressions are allowed in this case. Hence, i;rograms t.hich use
this side effect to introduce carments, must be edited to place a ., .. before
these fields in order to assent>le correctly.

'!he assent>ly language p,:ogram is formulated as a sequence of statements of
the above form, terminated q,tionally by an END statement. All statements
followio;i the END are ignored by the assembler.

3. FORMit,X; THE CPERAND.

In order to canpletely describe the q:,eration codes and pseudo operations,
tt is necessary to first p,:esent the form of the q:,erand field, since it is
used in nearly all statements. Expressions in the q:,erand field consist of
simple q:,erands (labels, constants, and reserved words), cont>ined in properly
formed sti:>expressions by arithmetic and logical q,erators. '!he expression
canputation is carried oot by the asserrbler as the assarbly i;roceeds. Fach
expression must p,:oduce a 16-bit value during the asserrbly. Further, the
nurrber of significant digits in the result must not exceed the inteooed use.
That is, if an expression is to be used in a byte nove i.tmediate instruction,
then the nost significant 8 bits of the expression must be zero. '!he
restrictions on the expression significance is given with the imividual
instructions.

3.1. labels.

As discussed above, a label is an identifier "4'lich occurs on a J;:Brticular
statement. In general, the label is given a value determined by the type of
statement lobich it i;recedes. If the label occurs on a statement \lbich
generates machine code or reserves meioory si;ace (e.g, a lO/ instruction, or a
DS pseudo q:,eration), then the label is given the value of the program address
which it labels. If the label precedes an EQU or SET, then the label is given
the value \lbich results fran evaluating the operaoo field. Except for the SET
statement, an identifier can label only one statement.

When a label appears in the q:,eraoo field, its value is sti:>sti tuted by the
assent>ler. '!his value can then be carbined with other q:,erands am q:,erators
to form the q:,eraoo field for a i;articular instruction.

3.2. Numeric Constants.

A numeric constant is a 16-bit value in one of several bases. '!he base,
called the ra::tix of the constant, is denoted by a trailing radix iooicator.
The rajix iooicators are

B binary constant (base 2)
O octal constant (base 8)

74

O octal constant (base 8)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal nmbers since the letter O is
easily ccmused with the digit 0. MY rumeric constant which does not
terminate with a radix indicator is assumed to be a decimal constant.

A constant is thus canposed as a sequence of digits, followed by an
optional radix indicator, V1ere the digits are in the appropriate range for
the radix. '!bat is binary constants must be canposed of 0 and 1 digits, octal
constants can contain digits in the range 0 - 7, viile decimal constants
contain decimal digits. Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (10D) , B (110) , C (120) , D (13D) , E (14D) , and F
(15D). Note that the leadil'Xl digit of a hexadecimal constant nust be a
decimal digit in order to avoid confusing a hexadecimal constant with an
identifier (a leadil'Xl 0 will always suffice) • A constant composed in this
manner must evaluate to a binary nunber viich can be contained within a 16-bi t
counter, otherwise it is truncated on the right by the assent>ler. Similar to
identifiers, inbedded N$" are allowed within constants to improve their
readability. Finally, the radix indicator is translated to UR.)er case if a
lower case letter is encountered. '!he followil'Xl are all valid instances of
numeric cmstants

1234
1234H
33770

1234D
0FFEH
0fe3h

3.3. Reserved Words.

1100B
33770
1234d

1111$0000$1111$0000B
33$77$220
0ffffh

There are several reserved dlaracter sequences which have predefined
meaniD3s in the q>erand field of a statement. '!he names of 8080 registers are
given below, viich, when encountered, produce the value shown to the right

A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

(again, lower case ncmes have the same values as their ui;per case
equivalents). Madline instructions can also be used in the operand field, and
evaluate to their internal codes. In the case of instructions which require
operands, \lihere the specific q>erand becanes a pirt of the binary bit pittern

75

of -t-tre instruction (e.g, KJV A,B), the value of the instruction (in this case
KJV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g, KJV i;xoduces 40H).

ltalen the synbol "$" occurs in the operand field (not inbedded within
identifiers and rumeric constants) its value becanes the address of the next
instruction to generate, not including the instruction contained withing the
current logical line.

3.4. String Constants.

String coostants represent sequences of AOCII characters, arrl are
represented by enclosing the dlaracters within apostrophe syrrbols (') • All
strings must be fully contained within the current physical line (thus
allowing "!" syni:)ols within strings) , arrl must not exceed 64 characters in
length. The apostrophe dlaracter itself can be included within a string by
representing it as a double apostrophe (the two keystrokes ''), which becanes
a single apostrophe \lilen read by the assenbler. In nost cases, the string
length is restricted to either one or two dlaracters (the DB pseudo operation
is an exception), in \thich case the string becanes an 8 or 16 bit value,
respectively. Two dlaracter strings becane a 16-bit constant, with the second
character as the low order byte, and the first dlaracter as the high order
byte.

The value of a dlaracter is its corresponding ASCII code. There is no
case translation within strings, and thus both uR;)er and lower case characters
can be , represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

'AB' 'c.
,,,, 'a''' ,,,,., ,,,,.,

'Walla Walla Wash.,
'She said ., Hello,, to me. '
·1 said ''Hello" to her.'

3.5. Arithmetic aoo u:>gical q;,erators.

The q;>erands described above can be canbined in normal algebraic notation
using any canbination of properly formed q,erands, operators, and
parenthesized expressions. The cperators recognized in the operand field are

a+b
a-b

+b
-b

a* b
a I b
a l-0D b
Norb

unsigned arithmetic sun of a and b
1.11signed arithmetic difference between a and b
mary plus (produces b)
mary minus (identical to 0 - b)
msigned nagnitude multiplication of a and b
msiqned magnitude division of a by b
remainder after a/ b
logical inverse of b (all e's becane l's, l's
becane e's), where bis considered a 16-bit value

76

a AND b
a OR b
a XOR b
a SHL b

a SHR b

bit-by-bit logical and of a and b
bit-by-bit logical or of a and b
bit-by-bit logicl exclusive or of a and b
the value '1«lich results fran shifting a to the
left by an arount b, with zero fill
the value '1«lich results fran shifting a to the
right by an arount b, with zero fill

In each case, a and b represent simple operands (labels, numeric
constants, reserved words, arrl one or two dlaracter strings), or fully
enclosed p:lrenthesized subexpressions such as

10+-20 10h+37Q L1. /3 (L2+4) SHR 3
('a' arrl Sfh) + '0' ('B '+B) OR (PSW+M.)
(1+(2+c)) shr (A-(B+l))

Note that all canputations are IErformed at asserrbly time as 16-bit unsigned
operations. Thus, -1 is canputed as 0-1 which results in the value 0ffffh
(i.e., all l's). The resulting expression must fit the ~ration code in
which it is used. If, for example, the expression is used in a ADI (add
immediate) instruction, then the high order eight bits of the expression must
be zero. As a result, the q>eration "ADI -1" produces an error nessage (-1
becanes 0ffffh ~ich cannot be represented as an 8 bit value), '1«lile "ADI (-1)
AND 0FFH'' is accepted by the asserrbler since the "AND.. q>eration zeroes the
high order bi ts of the expression.

3.6. Precedence of Operators.

As a coovenience to the programmer, AfM assunes that q>erators have a
relative precedence of application '1«lich allows the progranmer to write
expressions without nested levels of p:lrentheses. The resulting expression
has assuned p:lrentheses \<lhich are defined by the relative precedence. The
order of awlication of q>erators in t.mparenthesize expressions is listed
below. Operators listed first have highest precedence (they are applied first
in an mparenthesized expression) , \<lhile operators listed last have lowest
precedence. Operators listed on the same line have equal E=Cecedence, and are
applied fran left to right as they are encountered in an expression

* / K>D SHL SHR
-+
NOr
1'ND

OR XOR

Thus, the expressions stx:>wn to the left below are interpreted by the asseabler
as the fully i:erenthesize expressions shown to the right below

a* b + c
a+b*c
a K>D b * c SHL d

(a * b) + c
a + (b * c)
((a K>D b) * c) SHL d

77

a OR b AND NOl' C + d SHL e a OR (b AND (NOr (C + (d SHL e))))

Balanced r;:arenthesized slbexpressions can always be used to override the
assumed r;:arentheses, and thus the last expression above could be rewritten to
force application of operators in a different order as

(a OR b) AND (NOr C) + d SHL e

resulting in the assuned r;:arentheses

(a OR b) AND ((NO!' C) + (d SHL e))

Note that an mparenthesized expression is well-formed only if the expression
which results fran inserting the assumed r;:arentheses is well-formed.

4. ASSEMBLER DIRECTIVES.

Assenbler directives are used to set labels to specific values during the
assrrbly, perform conditional asseni:>ly, define storage areas, arrl s-pecify
starting crldresses in the program. Pach asserrbler directive is denoted by a
"pseudo cperation" which appears in the cperation field of the line. '!be
acceptable pseudo cperations are

OIG
END
mu
SE!'
IF
ENDIF
te
~

rs

set the program or data origin
errl program, optional start crldress
rumeric "equate''
rumeric "set"
begin conditional asserrbly
errl of conditional asserrbly
define data bytes
define data words
define data storage area

The irrlividual pseudo cperations are detailed below

4.1. The OIG directive.

'!be OIG statement takes the form

label oro expression

where "label" is an optional program label, arrl expression is a 16-bit
expression, coosisting of cperands 'Nhich are defined previous to the OR;
statement. The assent>ler begins machine code generation at the lcx:ation
specified in the expression. '!'here can be any rn.mber of oro staterents within
a particular program, arrl there are no checks to ensure that the programmer is
not defining overlapping nemory areas. Note that rost programs written for
the CP/M system begin with an oro statement of the form

OIG 100H

78

'1ti1ich causes mad1ine code generation to begin at the base of the CP/M
transient i;rogram area. If a label is specified in the OIG statement, then
the label is given the value of the expression {this label can then be used in
the q>erand field of other statements to represent this expression).

4.2. The END directive.

"Jhe END statement is cptional in an assenbly language program, but if it
is i;resent it must be the last statement {all sli:>seguent statements are
ignored in the asserrbly). The two forms of the END directive are

label END
label END expression

'1ti1ere the label is again cptional. If the first form is used, the asserrbly
process stops, and the default starting cKidress of the 1Xogram is taken as
0000. otherwise, the expression is evaluated, and becanes the p:-ogram
starting cKidress {this starting cKidress is included in the last record of the
Intel formatted · madline code "hex" file which results fran the assenbly).
Thus, m:>st CP/M assenbly language trograms erx:I with the statement

END 100H

resultir¥3 in the default starting cKidress of 100H (beginnir¥3 of the transient
program area).

4.3. The EQU directive.

"Jhe EOU (equate) statement is used to set up synonyms for p:irticular
numeric values. the form is

label E()U expression

'1ti1ere the label must be present, and must not label any other statement. 'lhe
asserrbler e11aluates the expression, and assigns this value to the identifier
given in the label field. The identifier is usually a rune which describes
the value in a nore human-oriented manner. Further, this name is used
throughout the program to "i;:arameterize" certain functions. Suppose for
example, that data received fran a Teletype appears on a i;:articular input
port, and data is sent to the Teletype through the next output p:>rt in
sequence. The series of equate statements could be used to define these p:>rts
for a particular hardware environment

EX)U 108 ;BASE :EORl' NUMBER FOR 'l'lY
BJU 'I'J.YBASE :'ffl D\TA IN
BJ0 'I'J.YBASE+ l J'l"lY D\'1'A ClJr

At a later p,int in the program, the statements viich access the Teletype
could appear as

79

IN 'l'IYIN :READ 'I'IY O!\TA 'ID Rm-A

•••

making the J;Cogram 110re readable than if the absolute i/o p:>rts had been
used. Further, if the hardware environment is redefined to start the Teletn;e
canmunications p:>rts at 7FH instead of 10H, the first statement need only be
changed to

'l'IYBASE mu 7FH ;BASE FOR!' NUMBER FOR 'I'lY

and the r;rogram can be reasserrbled without dlanging any other statements.

4.4. The SEr Directive.

·l'he SET statement is similar to the EQU, taking the form

label SEr expression

except that the label can occur on other SEr statements within the r;rogram.
The expression is evaluated aoo becomes the current value associated with the
label. Thus, the EQU statement defines a label with a single value, \ttlile the
SET statement defines a value which is valid fran the current SET statement to
the p:>int \ttlere the label occurs on the next SET statement. The use of the
SET is similar to the EQU statement, but is used 110st of ten in controlling
conditional asserrbly.

4.5. The IF and ENDIF directives.

The IF and ENDIF statements define a range of asserrbly language statements
which are to be included or excluded during the asserrbly process. The form is

IF expression
statementtl
statementt2

•••
statementtn
ENDIF

Upon encountering the IF statement, the asserrbler evaluates the expression
following the IF (all q,erands in the expression must be defined ahead of the
IF statement) • If the expression evaluates to a non-zero value, then
statement#! through statement#n are asserrbled; if the expression evaluates to
zero, then the statements are listed but not asserrbled. Conditional asserrbly
is often used to write a single "generic" proqram which includes a rurrber of
possible run-time environments, with only a few s~cific p:>rtions of the
program selected for any particular asserrbly. The t'ollowing program segments
for example, might be part of a p:-ogram which canmunicates with either a
Teletyi;:e or a CR!' console (but not both) by selecting a i;:articular value for
TTY before the asserrbly begins

80

-mo£ mu
FALSE mu . ,
T'lY mu . ,
T'lYBASE mu
CRrBASE mu
OONIN
CDNOOl'

. ,

IF
a;;>U
mu
ENDIF

0FFFFH
NOr T1UE

TRJE

10H
20H
T'lY
'ITYBASE
Tl.YBASE+l

IF NOI' T'lY
a)NIN mu CRI'BASE
roNOOr mu CRI'BASE+ 1

ENDIF
•••
IN CDNIN
•••
our

;DEFINE VALUE CF TR.JE
;DEFINE VALUE CF FALSE

:TR.JE IF TTY, FALSE IF CRI'

;BASE CF TTY I/0 I:oRl'S
;BASE CE CRl' 1/0 I:oRTS
;A.55.EMBLE REIATIVE 'ID 'ITYBASE
:CONSOLE INPUl'
;CONSOLE OOrPU1'

:A.5SEMBLE REIATIVE 'ID CRI'BASE
;a:>NSOLE INPtJl'
:CONSOLE OOl'PtJr

;READ a:>NSOLE O\TA

;wlUTE CDNSOLE O\TA

In this case, the p:ogram would asserrt>le for an environment tihere a Teletype
is connected, based at !X)rt 10H. The statement defining TTY could be dlanged
to

mu FALSE

aoo, in this case, the p:ogram would asserrt>le for a CRI' based at '(X)rt 20H.

4.6. The DB Directive.

The DB directive allows the i;rogranuner to define initialize storage areas
in single i;recision (byte) format. The statement form is .,.

label DB etl, et2, ••• , etn

Wlere etl through etn are either expressions l«lich evaluate to 8-bit values
(the high order eight bi ts must be z.ero) , or are ASCII strings of length no
greater than 64 characters. There is no i;ractical restriction on the nmber
of expressions included on a single source line. 'l'he expressions are
evaluated arrl placed SE:quentially into the machine code file followi~ the
last p:ogram address generated by the assenbler. String characters are
similarly placed into nemory starting with the first character and errliig with
the last character. Strings of length greater than two characters cannot be
used as operands in nore canplicated expressions (i.e. , they must starx:I alone
between the canmas) • Note that ASCII characters are always placed in mem:>ry
with the puity bit reset (0). Further, recall that there is no translation
fran lower to UR;>er case within strings. The ~tional label can be used to
reference the data area throughout the remainder of the p:ogram. Examples of

81

valid 00 statements are

data: Il3
IE

signon: IE
Jl3

4. 7. The Dtl Directive.

0,1,2,3,4,5
data and 0ffh,5,377O,1+2+3+4
'please type your name',cr,1£,0
'AB' SHR 8, 'C', 'DE' AND 7Fff

The DtJ statement is similar to the DB statement except double J;Cecision
(two byte) words of storage are initialized. The form is

label I:M etl, et2, ••• , etn

W1ere etl through etn are expressions ~ich evaluate to 16-bit results. Note
that ASCII strings of length one or two characters are all~, but strings
lorger than two characters disallowed. In all cases, the data storage is
consistent with the 8080 processor: the least significant byte of the
exJ;eession is stored forst in neioory, followed by the nost significant byte.
Examples are

doob: IJtl 0ffefh,doub+4,signon-$,255+255
IJtl 'a .. , 5, .. ab .. , .. CD .. , 6 shl 8 or llb

4.8. The 00 Directive.

The 00 statement is used to reserve an area of uninitialized mem::>ry, and
takes the focm

label 00 expression

where the label is cptional. The assent>ler begins slbseguent code generation
after the area reserved by the DS. Thus, the 00 statement given above has
exactly the same effect as the statement

label: E0U $;LABEL VALUE IS aJRRENT CDCE i:D:ATION
OIU $-+expression ; !iOJE PASr RESERVED AREA

5. OPERATICN (l)IES.

Assenbly language operation codes form the J;Cincipal part of assemly
language programs, arrl form the ooeration field of the instruction. In
general, AfM accepts all the standard nnem:mics for the Intel 8080
microcanputer, ~ich are given in detail in the Intel manual "8080 Assent>ly
language Programming Manual." Labels are optional on each input line aro, if
included, take the value of the instruction ~dress .irrmediately before the
instruction is issued. The iooividual operators are listed breifly in the

82

followin:J sections for canpleteness, al.trough it is mderstood that the Intel
manuals sh:>uld be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range 0-7
lbich can be one of the i;redefined registers
A, B, c, D, E, H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range 0-255

el6 represents a 16-bit value in the range 0-65535

which can themselves be foaned fran an arbitrary canbination of ~rands arrl
operators. In s::>me cases, the ~rands are restricted to particular vaiues
within the allowable range, such as the PUSH instruction. 'lhese cases will be
noted as they are encountered.

In the sections wiich follow, each operation codes is listed in its mst
general form, along with a specific example, with a sh:>rt explanation arrl
special restrictions.

5.1. Jumps, Calls, arx1 Returns.

'!he Jump, Call, am Return instructions allow several different forms
which test the coodi tion flags set in the 8080 microcanputer CPO. '!he forms
are

JMP el6 JMP IJ. Jump lllCOnditionally to label
JNZ el6 JMP L2 Jump on non zero condition to label
JZ el6 JMP 1008 Jump on zero condition to label
JNC el6 JNC IJ.+4 Jump no carry to label
JC el6 JC L3 Jump on carry to label
JR) el6 JR) $+8 Jump on parity odd to label
JPE el6 JPE L4 Jump on even parity to label
JP el6 JP GAl+1A Jump on p::>sitive result to label
JM e16 JM al Jump on minus to label

CALL el6 CALL Sl call subroutine mconditionally
mz el6 mz S2 call subroutine if non zero flag
CZ el6 CZ 100H call subroutine on zero flag
me el6 me S1+4 call subroutine if no carry set
cc el6 cc S3 Call subroutine if carry set
CR> el6 CR> $+8 Call subroutine if J;Brity odd
CPE el6 CPE S4 Call subroutine if P!!rity even
CP e16 CP ~ call slt>routine if p::>sitive result
CM el6 CM bl$c2 Call subroutine if minus flag

RST e3 RST 0 Progranmed ''restart", equivalent to
CALL 8*e3, except one byte call

83

REI'
mz
RZ
ml:
RC
RPO
RPE
RP
RM

Return fran subroutine
Return if non zero flag set
Return if zero flag set
Return if no carry
Ieturn if carry flag set
Return if P3rity is odd
Return if p:3r i ty is even
Ieturn if i;:ositive result
Return if minus flag is set

5.2. Irrrnediate Operand Instructions.

Several instructions are available ~ich load single or double prec1s1on
registers, or single precision menory cells, with constant values, along with
instructions ~ich terform i.rrmediate arithmetic or logical operations on the
accumulator {register A) •

MVI e3,ea

ADI ea
ACT ea
SUI ea
SBI ea
ANI ea
XRI ea
ORI ea
CPI e8

MVI B,255 r-t:>ve inrnediate data to register A, B,
C, D, E, H, L, or M (menory)

ADI 1 Add immediate operand to A without carry
ACT 0FFH Md immediate operand to A with carry
SUI L + 3 Subtract from A without borrow {carry)
SBI L !IND 11B Subtract fran A with borrow {carry)
!!NI $-AND 7FH Logical "aoo" A with imnediate data
XRI 1111$0000B "Exclusive or" A with irrmediate data
ORI L !IND l+l Logical "or" A with inmediate data
CPI 'a.. COmpare A with iillllediate data {same

as SUI except register A not dlanged)

LXI e3,el6 LXI B,1008 IDad extended inrnediate to register p:iir
{e3 must be equivalent to B,D,H, or SP)

5.3. Increment and Decrement Instructions.

Instructions are provided in the 8080 repetoire for incrementing or
decrementing single aoo double i;recision registers. The instructions are

INR e3

OCR e3

INX e3

ocx e3

INR E

OCR A

INX SP

OCX B

Single p:-ecision increment register {e3
i;roduces one of A, B, c, o, E, H, L, M)
Single precision decrement register {e3
produces one of A, B, c, D, E, H, L, M)
Double i:recision increment register p:iir
(e3 must be equivalent to B,O,H, or SP)
Double precision decrement register p:iir
(e3 must be equivalent to B,D,H, or SP)

5.4. Data r-t:>vernent Instructions.

84

Instructions viich nove data fran nemory to the CPU and fran CPU to
mem::>ry are given below

KN e3,e3

LDAX e3

STAX e3

LHLD el6

SHLD e16

Lil\ el6
STA el6
lOP e3

P{BH e3

IN ea
our ea
XTHL
PCllL
SPHL
XCBG

M:>V A,B

I.DAX B

STAX D

LHLD I.J.

SHLD L5+x

Lil\ Gamma
STA X3-5
lOP PSW

P{BH B

IN 0
our 255

Move data to leftm:>st element £ran right
nost element (e3 pcoduces one of A,B,C
D,E,H,L, or M). KN M,M is disallowed
Load register A fran canputed cKldress
(e3 must p:oduce either B or D)
Store register A to canputed cKldress
(e3 must p:oduce either B or D)
I.ocd HL direct fran location el6 (double
p:ecision load to H and L)
Store HL direct to location el6 (double
pcecision store fran H and L to mem:,ry)
I.ocd register A fran address el6
Store register A into nemory at el6
I.Dcd register p:lir fran stack, set SP
(e3 must p:-oduce one of B, D, H, or PSW)
Store register IBir into stack, set SP
(e3 must p:oduce one of B, D, H, or PSW)
I.ocd register A with data fran port ea
Send data fran register A to p:>rt e8
Exchange data fran top of stack with HL
Fill p:-ogram counter with data fran HL
Fill stack p:>inter with data frcn HL
Exchange DE pair with HL pair

5.5. ~ithmetic I.ogic Unit Operations.

Instructions viich act up:>n the single i;recision accumulator to ~rform
arithmetic and logic q;>erations are

ADD e3 ADD B Add register given by e3 to accumulator
without carry (e3 must i;roduce one of A,
B, c, D, E, H, or L)

AOC e3 ADC L Add register to A with carry, e3 as above
SUB e3 SJB H Subtract reg e3 fran A without carry,

e3 is defined as above
SBB e3 sea 2 Sti:>tract register e3 fran A with carry,

e3 defined as above
ANA e3 ~ l+l IDgical .. and" reg with A, e3 as above
XRA ,e3 XRA A "Exclusive or" with A, e3 as above
ORA e3 ORA B Logical "or" with A, e3 defined as above
CMP e3 CMP H Canpare register with A, e3 as above
MA Decimal adjust register A based upon last

arithmetic logic mit operation
CK\ Complement the bits in register A
S'lC 'Set the carry flag to 1

85

RAL

RAR

OM e3 mo s

5.6. Control Instructions.

CQnplement the carry flag
R:>tate bits left, (re)set carry as a side
effect (high order A bit becanes carry)
R:>tate bits right, (re)set carry as side
effect (low order A bit becanes carry)
R:>tate carry/A register to left (carry is
involved in the rotate)
R:>tate carry/A register to right (carry
is involved in the rotate)

Double txecision add register pair e3 to
HL (e3 must txoduce B, D, H, or SP)

'!he four renaini.Bj instructions are categorized as control instructions,
and are listed below

BLT
DI
EI
NCP

Halt the 8080 processor
Disable the interrupt system
Fl'lable the interrupt system
No operation

6. ERR:>R M::SSAG::S.

when errors ocx:ur within the assembly language {Xogram, they are listed as
single dlaracter flags in the leftm:,st t:0sition of the oource listing.. 'lbe
line in error is also echoed at the console oo that the oource listing need
not be examined to determine if errors are present. The error codes are

D Data error: element in data statement cannot be
placed in the specified data area

E Expression error: expression is ill-formed and
cannot be cxmputed at assenbly time

L Label error: label cannot appear in this context
(may be duplicate label)

N Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version)

O Overflow: expression is too canplicated {i .e~, too
many pending q,erators) to canputed, simplify it

P Phase error: label does not have the same value on
two slbsequent passes through the program

86

R Register error: the value specified as a register
is not canpa.tible with the operation code

v Value error: operand encountered in expression is
improperly formed

Several error nessage are printed which are due to terminal error
conditions

NO SClJRCE FILE FRESENT

NO DIRJOC'roRY SPACE

SClJRCE FILE ~ ERK>R

SOORCE FILE RFAD ERK>R

OOI'PUI' FILE NUTE ERROR

CANOOl' CLCSE FILE

7. A SAMPLE SESSIOO.

'!be file si:ecified in the ASM canmand does
not exist on disk

The disk directory is full, erase files
which are not needed, and retry

Improperly formed ASM file name (e.g., it
is specified with 11?11 fields)

Source file cannot be read properly by the
asserrbler, execute a TYPE to determine the
'(X)int of error

output files cannot be written properly, most
likely cause is a full disk, erase and retry

output file cannot be closed, check to see
if disk is write protected

'!be followirg session soows interaction with the assenbler and debugger in
the development of a simple asseably lan;Juage p:-(XJram.

87

ASft SORT~

CP ✓" ASSEHBLER - YER 1.8

es sc ~ .ftu adhess
883H USE FACTOR 0/o J -t-,u~ us&}. 00 To ff (~ciec1.~)
END OF AS·SENBL Y

DIR SORT. *J.

SORT ASH $4W« .f'i.e.
SORT BAK fo~;(~ (4,f- M~~
SORT PRN ~~. f.f. (c,"'._l~ -fa.I. ct.,...Je.,,)
SORT HEX wcad.u cotl.L hie.
A>TYPE SORT.PR~

Sdu,((. l "'t, r,_ ___ ,..A ____ ..,.,

SORT PROGRA" IN CP~" ASSENBLY LANGUAGE ~~oh-lo~: __, , START AT THE BEGIHHIHG OF THE TRAHSIEHT PROGRA" AR
e1ee 1r-- .

~l«cl ..da-,. r.t.d,.
0188 2(4601,..J SORT:
8103 3681
8185 214781
8188 3698

818A 7E
8188 FE89
010D D21981

8118 214681
811 3 7E87C20881

CO"P:

J

ORG 180H

U<I
MYI
Ll<I
NYI

COMPARE
HOY
CPI
JHC

EHD OF
LXI

H,SW
M, l
H, I
11, 8

I Ullti
A, t1
H-1
CONT

OtfE PASS
H, SW

l'IOV A,"! ORA A!

;ADDRESS SWITCH TOGGLE
;SET TO 1 FOR FIRST ITERATION
; ADDRESS IHDEX
; I = 0

ARRAY SIZE
;A REGISTER =a I
;CY SET IF I < <H-t>
;COHTIHUE IF I < = (H-2 >

THROUGH DATA
;CHECK FOR ZERO SWITCHES
JHZ SORT ;END OF SORT IF SW=8

8118 FF RST 7 ;GO TO THE DEBUGGER IHSTEAD OF REf.

~nea~COHTINUE THIS PRSS
J; ADDRESS I HG I, SO LOAD AY< I> INTO REGISTERS

8119 5F16882148CONTi MOY E,A! MYI D, 0! LXI H,AY! DAD D! DAD D
0121 4E792346 "OY C,"! NOY A, C! IH)(H! HOV B,N

; LOW ORDER B'ITE IN A AND C, HIGH ORDER BYTE IN B
;

"OY HAND L TO HDDRESS AY<I+l)
8125 23 IHX Ji

J

J CONPARE YALUE WITH REGS COHTAIHIMG AY<I>
9126 965778239£ SUB N! MOY D,A! l'IOY A,B! IHX H! S88 11 ;SUBTRACT

i

BORROW SiT lF AY(l+l> > AY<I>
8128 DAJF81 JC INCi ;SKIP IF IN PROPER ORDER

;

CHECK FOR EQUAL VALUES
912E 92CA3F81 ORA D! JZ IHCI ;SKIP JF AY<J> = AY(J+l>

88

8132 5678285E NOYD,"! "OY N,8! DCX H! "DYE,"
813, 7128722873 "OY H,CI DCK HI NOY M,DI DCX H! "OY "'E

;

; INCRE"EHT SWITCH COUHT
8138 21468134 LK I H, SW ! I HR N

;

; IHCRENEHT I
8l3F 2l47.8134C3 J HC I 1 LKJ H,11 JNR NI J"P CO"P

i
; DEFINITION SECTION

eu, ee sw,
DATA
DB
DS
DW
EQU
END

8 ;RESERVE SPACE FOR SWITCH COUNT
8147 l: t ;SPACE FOR lHDEK
0148 858064881EAY, 5, 100, 30, 50, 20, 7, 1800, 308,100, -32767
888A • ..__
8l5C ~ft~ wdCAe.

A)TYPE SORT.HEX¥

($-AY)/2 ;CONPUTE H INSTEAD OF PRE

:l8818888214681360121478136887EFE09D2190140
,198118882146817EB7C28081FF5F16002148011988 ~~tM:4t.;,..
1 t8812088194E79234623965778239EDA3F0182CAA7

~ .f,vw,c1-,100138083F8156702B5E71287228732146013421C7
:07814888470134CJ0A01006E
11901488805886488tl08320014880780E8832C8188
:84815808648001808E
: 0000800800

~ dtf,W\ YU\'\. A>DDT SORT.HEX;

16K DDT YEf< t. 0

(w, add,~ ~ S,l) sb.~) NEXT PC
dm.....tt-d4dress 815C 8888

-XP,>

P•0888 188,2 C~ fC.10 lOO

t='.11, -UFFFFJ ~-fw ,t»~<"Sf(fs

C8Z8N8E8I0 A•8& 8=0008 D=8008 H=8008 S=0100 P=8100 LXI H,0146:tt0100
-Tl8J ~ to16~~

C8Z8N8E8I8 A•81 8:a8888 D•8889 H•8146 5•0188 P•8188 LXI H,8146
C0Z8N8E818 A•81 8:a8000 Da:8880 H•0146 $=0100 P=8183 KYI ",01
C8Z8N8E818 A•8l 8=8000 D•8088 H=0146 S=8100 P=0185 LXI H,0147
C8Z8N8E8l8 A•8 l 8•8888 0•8800 H=0147 S=-0100 P=8108 "'ii ",00
C0Z8N8E818 A•8l 8•0008 D•8088 H=0147 S=0100 P=010A NOY A.ti
C8Z0K8E810 A•88 8=8088 D=8000 H=0147 S=0100 P=010B CPI -09
Cl201UE818 A=88 8=888·0 0=8888 H=0147 S=0100 P=010D JNC 0119
ClZ8NlE8I8 A•88 8•8888 D•8088 H•8147 S=8100 P=8 l18 LXI H, 8146
ClZ8"lE818 A•88 8•8888 D•8888 H•8146 S•8100 P•.0113 "OY A,N
ClZ8KlEIJ8 A•l.t .8•8888 D•8888 H•8146 6•8188 P•l 114 ORA A
C8Z8"8E8J8 A•81 8•8888 D•l888 H•8146 6•0188 P•l 115 JHZ 8189
C8Z8"8E8l8 A•81 9•8888 D•8888 H•8146 S•8188 P•8188 LXJ H, 8146
CIZ8"8E818 A•ll 8•8888 D•l888 H•8l46 S•818'0 P•8183 "Yl "" 81 C8Z8"8E8J8 A•Bl 8•8888 D•8888 H•0146 S•0100 P=8185 LXJ H,8147
C8Z8"8E818 R•81 8·•8888 1) • 8888 H•8147 S•8180 P•8U8 "YJ ",80
C8Z8"8E8J8 A•8l 8•888·8 D•8888 H • 8,1 4 7 $•8108 P•IUA t\OY A,N•B188
--AIID

~tit_) 1111) JC t 19.,1 C~~e.'il> t1 J""i ~ OS~ 0' ,. ,J
ltlfH

89

···~-~~----~~

.
C8Z8N8E818 A•88 8•888°8 D•l888 H•8l47
C8Z8NIE818 A=88 8=8888 D=8888 H=8l 46

S=8188 P•8188 LXI
S=l.188 P=8103

. t;V'J'
"# 81 1 '"'°
H1814o

C8Z8N8E810 A=88 8=8888 D=8808 H=8l 46
C8Z8N8E818 A=88 8=8888 D=8888 H=8l47
C8Z8"8E8J8 A.=88 8=8888 D=8888 H=8147
C8Z8tt8E8J8 A=88 8=t888 D=8888 H=8147
C1Z8"1E8U) A=88 8•8888 D=8888 H=8147
C1Z0"1E818 A=08 8=0888 D=8808 H=8-l 47
C1Z0"1E8l8 A=88 8•8888 D=8888 H=0147
C1Z8N1E8l8 A=88 8=8888 D=8888 H=8l 47
C1Z8"1E818 A=88 8=8888 D=-8808 H=8148
-~8Z8N1 Ell I A=88 8=8888 D•8888.H=8148

0Z8N1E0l0 A=00 8=8808 D=08.08 H=0148
C8Z8"1E818 A=88 8=880S D=8880 H=0148
C8Z8"1Eil8 A=85 8=88&5 D•8888 H=8148
CIZ8"1E818 A•85 8•8885 D•8888 H•8l49
-Ll8~

8188 LXI H,8146
8183 "YI "181
81.05 LXI H,8141

NYl
5=0188 P=8105 LXJ
S=8180 P=8108 NVI
S=8188 P=818A NOY
$=8188 P=018B CPI
S=8188 P=810-D JC
S=8188 P=8119 J10Y
S=8188 P=8 ll A NVI
S=8188 P=011C LXI
S•0188 P=8 l.1 F DAD
5=8189 P=9128 DAD
$=0100 P=0121 t10V
S=0180 P=0122 f1Oi/
5=8188 P=0123 INX
S•8188 P•8124 NOY

~q,,··hc.
bt"~f'°~

H 1 8 1 4 7 \>c',(C'.

"' 08 ~
A,")
09 /fl"
8119
E,A
D,08
H10148
D
D
C,i'f
A,C
H
B,N•l125

~

8108 "YI
818A "OY
8108 CPI
818D JC

N188
A1"
89
·eu,

l \~t sow.e cod.~
~ l001(

8118 LXI H,8146
8ll3 NOY "'" 81l4 ORA A
0ll5 JHZ 0188
-L;
8118 RST 87
8119 "OY E, A
81 lA "YI)., 88
811C LXI H,8148

- a.~+ l~ ~'"' ~AC\" . I .
~L.~ _f ~?'- (012.~) owi nw_ ,~ ~-\ +1rM -ro If~

-c, 1 19,1 -:tar\ 'pva,'1"'- """"

• 812 7 ~6' ~~ '114 2.t~N-(\~ntpf- 7 f ~ f~f '?')"4 (fY~"" lAX.lS

-T4J look ltl- lCX'lf~ 'f>Y<7jtA-. ~-kt m.,k + l0Gf'"'1 l'llbh~)
C8Z8N8£918 A•38 9•8864 D•8886 H•8156 S=8188 P•8127 NOY D,A
C8Z8N8E018 A•38 8=0064 D=3806 H=81S6 S=0100 P=8128 MOY A,8
C8Z8N8E8l8 A=08 8=8064 D•3806 H=0156 S=0100 P=0129 IHX H
C020N8E018 A=80 0=0064 D=3806 H=0157 S=0100 P=012A S88 H*&129
-D148

8148 85 88 87 08 14 00
0158 32 88 64 08 64 00
8168 88 88 08 08 08 00

...;-doeta. t'i ~, b~ fY70.w Joe;~t s-½,.
1 E 08
2C 01 E8 £13 91 80 00 08 00 00 2 D.D.,
00 00 ea liu 00 00 00 00 00 t;0

90

-~ ,et"'~ 1'o c.,tu. .
DDt SORT. HEX~ relOAd ~ ~""""j ''""-1
161< DDT YER 1.0
NEXT PC
815C 8888
-XP

P • ee 09 18 e;. stt 1'l -\o ½'~"'~~ ri 'f'~YM'\
-L 18 D;., l".;t- l,GJ. ~cod.t.

810D JHC 8 11 9 /
8119 LXI H,8146
- A\..».4 l t1r ~ & 0-l~ov±
.. Al8DJ «s~\t.~ ~

018D JC 11~

81 l~

-L100
1

\~\- ~~ s~ of -,V'j\fll4A.

0.100 L XI H, 0 14 6
8183 l'IYJ N,01
8105 LXI H~8147
8108 NYI 11,00
- A~ list w~~ tvl,,J-,, . ..
-AteJ,i ~ sw.+dA

8103 NYI N,0,2

0105J

-"C rt.-b"'- ""1 a/M- Wl'.k, e,f{.C. (,, u,c,..ks OS wel()

SAYE 1 SORT. COM,1 S(Avt 1 fO-~ (i,g L.:,¼a,.f..,_ 1.D0~101.ffH) Ot/1. d,s)f. \" C4~
. w~ "'-•-. -n.loot l.d-«-

A> DDT SORT. C0",1 yii!!~ "l>'D1" w~
· SO.\lfcl ~~°"j \.,.._--,e

16K DDT YER 1. 9
NEXT PC . .
0200 8100 11 (!.c)M" .f,l, ctlw63i> ~~ wrt\.- ~lOOi,f

-G91 t&A.~-t"e- y'r~fA"-' +nl\lll\ 1'C•t00M

•eue M'~~(!d:s•p Ct.-sr1) ~""~
.. n ue

8148 85 88 87 88 14 80 lE
✓ ~ 1'0f&~ ~

08
0150 32 88 64 08 64 88 2C 01 E.B 03 81 80 80 08 08 80 2. D. D. ,
8160 88 80 80 08 00 88 80 00 00 08 00 00 80 08 00 00
81·78 88 00 88 \t8 08 88 80 ee ea 00 00 ee ee ee 0e ea

·GI,, r~~-lo ~/M.
91

ED.SORT. AS"J MOXL c.~s -\o °"j'~l 'F~ll(l"""
c\t-~ r.. .. •

•H11 "\.7T\, 1'twlkli6 ,I
"VJ N, 8 i I = 0

•-;,,,.T Ql& l..c .:. -4or
LXJ H, I i ADDRESS I HDEX

• -J -,. a.MLu l~
NYJ "'1 ;SET TO 1 FOR FIRST ITERATION

•k1 ~\l \-r-d.-4,tt t\l.d luw-
LXJ H,I ;ADDRESS INDEX

•I,1 l~ ~ l~
"Yl "'8 iZERO SW

•T
',1 ~ LXI H, I ;ADDRESS INDEX

• HJH "\.90,;.
J.NC•TJ
COHT ;CONTINUE IF I <= <H-2>

•-2D 1CO,L T,1
JC COHT ;COHTIHUE IF I<= <H-2>

• E; {s,,.,,eal!-! cf1~! A
r lie,~ ddl A ·

AS'1 SORT. AAZ;~ff"-hle

CP/H ASSEMBLER - VER 1.0

01SC ~aAd.~~e.
00JH USE FACTOR
EHD Of ASSEMBLY

DDT SORT. HEX., M V,Oj~ ~

161(DDT YER 1. 0
NEXT PC
015(: 0000
-fi100_;

•0118
--D148}

e1•a 05 00 01 ee
0150 32 00 64 08
0160 ee 00 00 00

r~~ai.
1~ 00 lE 00
64 ffe 2C 01 EB 03 81 80 00 08 00 00.2.D.D.,
00 00 00 00 00 00 00 00 00 00 00 iH:s

- Abl\-1 w..-\t- ~,J--

- C ~ ~-\v e/ /1J,...-1~7AUA. cl.uts O t. ~

92

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM: USER'S MANUAL

COPYRIGHT

Copyright (c} 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warrar h
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM: USER'S MANUAL

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

Table Of Contents

ED: A Content Editor For The CP/M Disk System:
User's Manual

1. ED Tutorial ••••••••••••••••••••••••••••••• 93
1.1 Introduction to ED ••••••••••••••••••• 93
1.2 ED Operation ••••••••••••••••••••••••• 93
1.3 Text Transfer Functions •••••••••••••• 93
1.4 Memory Buffer Organization ••••••••••• 97
1.5 Memory Buffer Operation •••••••••••••• 97
1.6 Comnand Srrings •••••••••••••••••••••• 99
1.7 Text Search and Alteration •••••••••• 100
1.8 Source libraries •••••••••••••••••••• 103
1.9 Repetitive Comnand Execution •••••••• 104

2. ED Error Conditions •••••••••••••••••••••• 105
3. Control Characters And Comnands •••••••••• 106

ED USER'S MANUAL

1 • ED TUTORIAL

1.1. Introduction to ED.

ED is the context editor for CP/M, and is used to create
and alter CP/M source files. ED is initiated in CP/M by
typing

{

<filename> }

ED <filename>.<filetype>

In general, ED reads segments of the source file given by
<filename> or <filename>. <filetype> into central memory,
where the file is manipulated by the operator, and subse
quently written back to disk after alterations. If the
source file does not exist before editing, it is created by
ED and initialized to empty. The overall operation of ED
is shown in Figure 1.

1.2. ED Operation

ED operates upon the source file, denoted in Figure 1
by x.y, and passes all text through a memory buffer where
the text can be viewed or altered (the number of lines which
can be maintained in the memory buffer varies with the line
length, but has a total capacity of about 6000 characters
in a 16K CP/M syst~). Text material which has been edited
is written onto a temporary work file under command of the
operator. Upon termination of the edit, the memory buffer
is written to the temporary file, followed by any remaining
(unread) text in the source file. The name of the original
file is changed from x.y to x.BAK so that the most recent
previously edited source file can be reclaimed if necessary
(see the CP /M commands ERASE and RENAME} • The temporary
file is then changed from x.$$$ to x.y which becomes the
resulting edited file.

The memory buffer is logically between the source file
and 'WOrking file as shown in Figure 2.

1.3. Text Transfer Functions

Given that n is an integer value in the range O through
65535, the following ED commands transfer lines of text
from the source file through the memory buffer to the tem
porary (and eventually final) file: ,

93

Source

File

I
I

After 11 (E)
Edit

I

Backup
File

x.BAK

Figure 1. overall ED Operation

Source
Libraries

Memory Buffer

Insert
(I)

Write

Type
(T)

Temporary

File

x.$$$

I
I

After :
Edit I

(E)

New
Source
File

Note: the ED program accepts both lower and upper case ASCII
characters as input from the console. Single letter commands
can be typed in either case. The U cODllland can be issued to
cause ED to translate lower case alphabetics to upper case as
characters are filled to the memory buffer from the console.
Characters are echoed as typed without translation, however.
The -u colllllland causes ED to revert to "no translation" mode.
ED starts with an assumed -u in effect.

94

Figure 2. Memory Buffer Organization

Source File

. . . ' l First Line,
..

2 . , Appended,' - . ' 3 • 'L' • ' .. :- ~n .. e~, ,
SP , . '--:--7"', '

l

2

Memory Buffer

' First Line'

' Buffered '

~ 'Text "-"-
' ' . '\.
' ' -,-, ' '-------1 I\ MP..,

I Unprocessed : N~I Free

~ Source I Append : Memory

, Lines \ I Space :
l- - - - - - _, I- - - - - - -- -

l

2

3

TP +

Temporary File

' ~irst Line\.
, Processed· ,

\ T;xt \., ,
:___ ' -

' ' ' '
' ' ~' \ .
Free File

Space

'---- -- ___ ,

Figure 3. Logical Organization of Memory Buffer

first
line

current
line CL
last
line

Memory Buffer

---------<cr><lf>

--------<cr><lf>

------A------<cr><lf>
--------<cr><lf>

95

nA<cr>* - append the next n unprocessed source
lines from the source file at SP to
the end of the memory buffer at MP.
Increment SP and MP by n.

nW<cr> - write the first n lines of the memory
buffer to the temporary file free space.
Shift the remaining lines n+l th-rough
MP to the top of the memory buffer.
Increment TP by n.

E<cr>

B<cr>

O<cr>

Q<cr>

- end the edit. Copy all buffered text
to temporary file, and copy all un
processed source lines to the temporary
file. Rename files as described
previously.

- move to head of new file by performing
automatic E command. Temporary file
becomes the new source file, the memory
buffer is emptied, and a new temporary
file is created {equivalent to issuing
an E command, followed by a reinvocation
of ED using x.y as the file to edit).

- return to original file. The memory
buffer is emptied, the temporary file
id deleted, and the SP is returned to
position 1 of the source file. The
effects of the previous editing commands
are thus nullified.

- quit edit with no file alterations,
return to CP/M.-

There are a number of special cases to consider. If the
integer n is omitted in any ED command where an integer is
allowed, then 1 is assumed. Thus, the commands A and W append
one line and write 1 line, respectively. In addition, if a
pound sign (I) is given in the place of n, then the integer
65535 is assumed (the largest value for n which is allowed).
Since most reasonably sized source files can be contained
entirely in the memory buffer, the command tA is often issued
at the begiMing of the edit'to read the entire source file
to memory. Similarly, the command #W writes the entire buffer
to the temporary file. Two special forms of the A and W

*<er> represents the carriage-return key

96

commands are provided as a convenience. The command OA fills
the current memory buffer to at least half-full, while OW
writes lines until the buffer is at least half empty. It
should also be noted that an error is issued if the memory
buffer size is exceded. The operator may then enter any
command (such as W) which does not increase memory require
ments. The remainder of any partial line read during the
overflow will be brought into.memory on the next successful
append.

1.4. Memory Buffer Organization

The memory buffer can be considered a sequence of source
lines brought in with the A command-from a source file. The
memory buffer has an associated (imaginary) character pointer
CP which moves throughout the memory buffer under command of
the operator. The memory buffer appears logically as shown
in Figure 3 where the dashes represent characters of the
source line of indefinite length, terminated by carr~e
return (<er>) and line-feed (<lf>) characters, and c
represents the imaginary character pointer. Note that the
CP is always located ahead of the first character of the
first line, behind the last character of the last line, or
between two characters. The current line CL is the source
line which contains the CP.

1.s. Memory Buffer Operation

Upon initiation of ED, the memory buffer is empty (ie,
CP is both ahead and behind the first and last character).
The operator may either aerend lines (A command) from the
source file, or enter the ines directly from the conso.le
with the insert command ·

I<cr>

ED then accepts any number of input lines, where each line
terminates with a <er> (the <lf> is supplied automatically),
until a control-z (denoted by tz is typed by the operator.
The CP is positioned after the last character entered. The
sequence

I<cr>
NOW IS THE<cr>
TIME FOR<cr>
ALL GOOD MEN<cr>
tz

leaves the memory buffer as shown below

97

NOW IS THE<cr><lf>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf~

~

Various commands can then be issued which manipulate the CP
or display source t~xt in the vicinity of the CP. The
commands shown below with a preceding n indicate that an
optional unsigned value can be specified. When preceded by
±, the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign (t) is replaced
by 65535. If an integer n is optional, but not supplied,
then n•l is asswned. Finally, if a plus sign is optional,
but none is specified, then+ is assumed.

±B<cr> - move CP to beginning of memory buffer
if+, and to bottom if-.

±nC<cr> - move CP by ±n characters (toward front
of buffer if+), counting the <cr><lf>
as two distinct characters

±nD<cr> - delete n characters ahead.of CP if plus
and behind CP if minus.

±nIC<cr> - kill (ie remove) ±n lines of source text
using CP as the current reference. If
CP is not at the beginning of the current
line when K is issued, then the charac
ters before CP remain if+ is specified,
while the characters after CP remain if -
is given in the command.

±nL<cr> - if n•0 then move CP to the beginning of
the current line (if it is not already
there) if n,'0 then first move the CP to
the beginning of the current line, and
then move it to the beginning of the
line which is n lines down (if +) or up
(if -) • The CP will stop at the top or
bottom of the memory buffer if too large
a value of n is specified. '

98

±nT<cr> - If n=0 then type the contents of the
current line up to CP. If n=l then
type the contents of the current line
from CP to the end of the line. If
n>l then type the current line along
with n-1 lines which follow, if+
is specified. Similarly, if n>l and
- is given, type the previous n lines,
up to the CP. The break key can be
depressed to abort long type-outs.

±n<cr> - equivalent to ±nLT, which moves up or
down and types a single line

1.6. Command Strings

Any number of commands can be typed contiguously (up to
the capacity of the CP /M console buffer) , and are executed
only after the <er> is typed. Thus, the operator may use
the CP/M console command functions to manipulate the input
command:

Rubout
Control-U
Control-C
Control-E

remove the last character
delete the entire line
re-initialize the CP/M System
return carriage for long lines
without transmitting buffer
(max 12 8 chars)

Suppose the memory buffer contains the characters shown
in the previous section, with the CP following the last
character of the buffer. The command strings shown below
produce the results shown to the right

Command String

1. B2T<cr>

2. SC0T<cr>

Effect

move to beginning
of buffer and type
2 lines:
"NOW IS THE

TIME FOR"

move CP 5 charac
ters and type the
beginning of the
line
"NOW I"

99

Resulting Memory Buffer

~NOW IS THE<cr><lf>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf>

NOW I~S THE<cr><lf>
l.=fJ

3.

4.

s.

6.

1.

2L-T<cr>

-LIK<cr>

I<cr>
TIME TO<cr>
INSERT<cr>
tz

-2LfT<cr>

<er>

move two lines down
and type previous
line
"TIME FOR"

move up one line,
delte 65535 lines
which follow

insert two lines
of text

move up two lines,
and type 65535
lines ahead of CP
"NOW IS THE"

move down one line
and type one line
"INSERT"

1.7. Text Search and Alteration

NOW IS THE<cr><lf>
TIME FOR<cr><lf>

~ ALL GOOD MEN<cr><lf>

NOW IS THE<cr><lf>.,6...
~

NOW IS THE<cr><lf>
TIME TO<cr><lf>
INSERT<cr><lf>~

L2J

NOW IS THE<cr><lf> .6'
~ TIME TO<cr><lf>

INSERT<cr><lf>

NOW IS THE<cr><lf>
TIME TO<cr><lf > ✓-~

~ INSERT<cr><lf>

ED also has a command which locates strings within the
memory buffer. The command takes the form

where c1 through CJc represent ;he characters to match followed
by either a <er> or control -z. ED starts at the current
position of CP and attempts to match all k characters. The
match is attempted n times, and if successful, the CP is
moved directly after the character ck. If then matches are
not successful, the CP is not moved from its initial position.
ieirch strings can include· tl (control-1), which is replaced
by the pair of symbols <cr><lf>.

*The control-z is used if additional commands will be typed
following the tz.

100

The following commands illustrate the use of the F
command:

Command String

1. BIT<cr>

2. FS T<cr>

3. Fitz0TT

Effect

move to beginning
and type entire
buffer

find the end of
the string "ST"

find the next "I"
and type to the
CP then type the
remainder of the
current line:
"TIME FOR"

Resulting Memory Buffer

~ NOW IS THE<cr><lf>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf>

NOW IS T ~HE<cr><lf>
L:.f.l

NOW IS THE<cr><lf>

TI~ FOR<cr><lf> cp
ALL D MEN<cr><lf>

An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make
simple textual changes. The form is:

where c1 through cn are characters to insert. If the inser
tion string is terminated by a +z, the characters c1 through
Cn are inserted directly following the CP, and the CP is
moved directly after character cn. The action is the same.
if the command is followed by a <er> except that a <cr><lf>
is automatically inserted into the text following character
c~. Consider the following command sequences as examples
o~ the F·and I commands:

Command String Effect

BITHIS IS tz<cr> Insert "THIS IS"
at the beginning
of the text

101

Resulting Memory Buffer

THIS IS~OW THE <cr><lf>

~
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf>

FTIMEtz-4DIPLACEtz<cr>

find "TIME" and delete
it1 then insert "PLACE"

JFOtz-JDSDICHANGESt<cr>

-SCISOURCE<cr>

find third occurrence
of "O" (ie the second
"O" in GOOD), delete
previous 3 characters,
then insert "CHANGES"

move back 8 characters
and insert the line
"SOURCE<cr><lf>"

THIS IS NOW THE<cr><lf>

PLACE~ FOR<cr><lf>
ALL GOOD MEN<cr><lf>

THIS IS NOW THE <cr><lf>
PLACE FOR<cr><lf>
ALL CHANGES.6..<cr><lf>

L=fl

THIS IS NOW THE<cr><lf>
PLACE FOR<cr><lf>
ALL SOURCE<cr><lf>

~CHANGES<cr><lf>

ED also provides a single OODllland which combines the F and
I conmands to perfom simple string substitutions. The conmand
takes the form

n s c1c2 ••• 'ictz d1d 2 ••• <\, {<~~>}
and has exactly the same effect as applying the conmand string

a total of n times. That is, ED searches the memory buffer
starting at th~ current position of CP and successively sub
stitutes the second string for the first string until the
end of buffer, or until the substitution has been performed
n times.

As a convenience, a command similar to Fis provided by
ED which automatically appends and writes lines as the search
proceeds. The fom is

which searches the entire source file for the nth occurrence
of the string c1c2••·Ck (recall that F fails if the string
cannot be found in the current buffer). The operation of the

102

~ command is precisely the same as F except in the case that
the string cannot be found within the current memory buffer.
In this case, the entire memory contents is written (ie, an
automatic iW is issued). Input lines are then read until
the buffer is at least half full, or the entire source file
is exhausted. The search continues in this manner until the
s~ring has been found n times, or until the source file has
been completely transferred to the temporary file.

A final line editing function, called the juxtaposition
command takes the form

with the following action applied n times to the memory buffer:
search from the current CP for the next occurrence of the
string c1c2 ••• ck. If found, insert the string dzd2 ••• ,dm,
and move CP to follow dm· Then delete all characters fo!lowing
CP up to (but not including) the string e1 ,e2, ••• eQ, leaving
CP'directly after dm• If e1,e2,•·•eq cannot be foand, then
no deletion is made. If the current line is

@]NOW IS THE TIME<cr><lf>

Then the command

JW tzWHATtztl<cr>

Results in

NOW WHAT~<cr><lf>
~

(Recall that tl represents the pair <cr><lf> in search and
substitute strings).

It should be noted that the number of characters allowed
by ED in the F,S,N, and J commands is limited to 100 symbols.

1.a. Source Libraries

ED also allows the inclusion of source libraries during
the editing process with the R command. The form of this
command is

103

where f1f2 •• f is the name of a source file on the disk with
as assumed fifetype of 'LIB'. ED reads the specified file,
and.places the characters into the memory buffer after CP,
in a manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB
until the end-of-file, and automatically inserts the charac
ters into the memory buffer.

1.9. Repetitive Command Execution

The macro command Mallows the ED user to group ED com
mands together for repeated evaluation. The M command takes
the form:

where c1c 2 ••• °k represent a string of ED commands, not inclu
ding another M command. ED executes the command string n
times if n>l. If n=0 or 1, the command string is executed
repetitively until an error condition is encountered (e.g.,
the end of the memory buffer is reached with an F command).

As an example, the following macro changes all occur
rences of GAMMA to DELTA within the current buffer, and
types each line which is changed: •

MFGAMMAtz-SDIDELTAtz0TT<cr>

or equivalently

MSGAMMAtzDELTAtzOTT<cr>

104

2. ED ERROR CONDITIONS

On error conditions, ED prints the last character read
before the error, along with an error indicator:

? unrecognized co11DD.and

> memory buffer full (use one of
the commands D,K,N,S, or W to
remove characters), F,N, or S
strings too long.

cannot apply COIIDD.and the number
of times specified (e.g., in
F command)

O cannot open LIB file in R
command

Cyclic redundancy check (CRC) information is written with
each output record under CP/M in order to detect errors on
subsequent read operations. If a CRC error is detected, CP/M
will type

PERM ERR DISK d

where dis the currently selected drive (A,B, •••). The oper
ator can choose to ignore the error by typing any character
at the console (in this case, the memory buffer data should
be examined to see if it was incorrectly read), or the user
can reset the system and reclaim the backup file, if it
exists. The file can be reclaimed by first typing the con
tents of the BAK file to ensure that it contains the proper
information:

TYPE x.BAK<cr>

where xis the file being edited. Then remove the primary
file:

ERA x.y<cr>

and rename the BAK file:

REN x.y•x.BAK<cr>

The file can then be re-edited, starting with the previous
version.

1 OS

J. CONTROL CHARACTERS AND COMMANDS

The following table summarizes the control characters
and commands available in ED:

Control Character

tc

te

ti

tl

tu

tz

rubout

break

106

Function

system reboot

physical <cr><lf> (not
actually entered in
command)

logical tab (cols 1,8,
15, •••)

logical <Cr><lf> in
search and substitute
strings

line delete

string terminator

character delete

discontinue command
(e.g., stop typing)

Command

nA

±B

±nC

±no

E

nF

B

I

nJ

±nK

±nL

nM

nN

0

±nP

Q

R

nS

±nT

± u

nW

nZ

±n<cr>

Function

append lines

begin lx>ttom of buffer

move character positions

delete characters

end edit and close files
(normal end)

find string

end edit, close and reopen
files

insert characters

place strings in juxtaposition

kill lines

move down/up lines

macro definition

find next occurrence with
autoscan

return to original file

move and print pages

quit with no file changes

read library file

substitute strings

type lines

translate lower to upper case if U,
no translation if -u
write lines

sleep

move and type (±nLT)

107

Appendix A: ED 1.4 Enhancements

The ED context editor contains a number of commands which enhance its
usefulness in text editing. The improvements are found in the addition of line numbers,
r ree space interrogation, and improved error reporting.

The context editor issued with CP/M 1.4 produces. absolute line number prefixes
when the "V" (Verify Line Numbers) command is issued. Following the V command,
the line number is displayed ahead of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range l to 65535. If the memory buffer
is empty, or if the current line is at the end of the memory buffer, then nnnnn appears
as 5 blanks.

The user may reference an absolute line number by preceding any command by
a number followed by a colon, in the same format as the line number display. In this
case, the ED program moves the current line reference to the absolute line number,
if the line exists in the current memory buffer. Thus, the command

345:T

is interpreted as "move to absolute line 345, and type the line." Note that absolute
line numbers are produced only during the editing process, and are not recorded with
the file. In particular, the line numbers will change following a deleted or expanded
section of text.

The user may· also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute line number by a colon. Thus,
the command

:4ffT

is interpreted as "type from the current line number through the line whose absolute
number is 4fel." Combining the two line reference forms, the command

345::44'fJT

for example, is interpreted as "move to absolute line 345, then type through absolute
line 4~0." Note that absolute line references of this sort can precede any of the
standard ED commands.

A special case of the V command, "~V", prints the memory buffer statistics in
the form:

free/total

where "free" is the number of free bytes in the memory buff er (in decimal) and "total"
is the size of the memory buffer. '

108

ED 1.4 also includes a ''block move" facility implemented through the "X" (Xfer)
command. The form

nX

transfers the next n lines from the current line to a temporary file called

X$$$$$$$.LIB

which is active only during the editing process. In general, the user can reposition
the current line reference to any portion of the source file and transfer lines to the
temporary file. The transferred line accumulate one after another in this file, and
can be retrieved by simply typing:

R

which is the trivial case of the library read command. In this case, the entire
transferred set of lines is read into the memory buffer. Note that the X command
does not remove the transferred lines from the memory buffer, although a K command
can be used directly after tfle X, and the R command does not empty the transferred
line file. That is, given that a set of lines has been transferred with the X command,
they can be re-read any number of times back into the source file. The command

is provided, however, to empty the transferred line file.

Note that upon normal completion of the ED program through Q or E, the
temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

Due to common typographical errors, ED 1.4 requires several potentially disas
terous commands to be typed as single letters, rather than in composite commands.
The commands

E (end), H (head), 0 (original), Q (quit)

must be typed as single letter commands.

ED 1.4 also prints error messages in the form

BREAK "x" AT c

where x is the error character, and c is the command where the error occurred.

109

CP/M DYNAMIC DEBUGGING TOOL (DDT): USER'S GUIDE

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the 'purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

CP/M DYNAMIC DEBUGGING TOOL (DOT): USER'S GUIDE

COPYRIGHT

Copyright {c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample.
programs for the 'purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

Table Of Contents

CP/M Debugging Tool (DOT): User's Guide

I. lntroduction ••••••••••••••••••••••••••••• 111
I I • DOT Comna n d s • • • • • • • • ••••••••••••••••••••• 11 3

1. The A (Assemble) Conmand ••••••••••••• 113
2. The D (Display) Comnand •••••••••••••• 114
3. The F (Fill) Comnand ••••••••••••••••• 114
4. The G (Go) Conmand ••••••••••••••••••• 114
s. The I (Input) Conmand •••••••••••••••• 115
6. The L (list) Comnand ••••••••••••••••• 116
7. The M (Move) Conmand ••••••••••••••••• 116
8. The R (Read) Comnand ••••••••••••••••• 116
9. >The S (Set) Conmand •••••••••••••••••• 117
10.The T (Trace) Comnand •••••••••••••••• 117
11.The U (Untrace) Conmand •••••••••••••• 118
12. The X (Examine) Comnand ••••••••••••• 118

I II.Implementation Notes ••••••••••••••••••••• 119
IV. An Example ••••••••••••••••••••••••••••••• 120

CP/M Dynamic DebuggiB;J Tool (DOI')

user's Guide

I. Introduction.

The DOI' program allows dynamic interactive testing aro debuggiB;J of
programs generated in the CP/M environment. The debugger is initiated by
typing one of the followirxJ canmands at the CP/M console Command level

Dor
DOI' filename.HEX
oor filename.OOM

ttlere "filename" is the name of the program to be loaded aro tested. In both
cases, the DOI' program is brought into main memory in the place of the Console
Camnand Processor (refer to the CP/M Interface Guide for standard memory
organization) , aro thus resides directly below the Basic Disk Operating System
portion of. CP/M. The Bln3 starting a:idress, tbich is located in the a:idress
field of the JMP instruction at location SH, is altered to reflect the reduced
Transient Program Area size.

The second aro third forms of the DOI' camnand soown above perform the same
actions as the first, except there is a sli:>sequent autanatic load of the
specified HEX or 00M file. The action is identical to the sequence of
camnands

DOI'
!filename.HEX or !filename.COM
R

were the I and R canmands set up aro read the specified program to test (see
the explanation of the I and R canmands below for exact details).

Upon initiation, DDl' prints a sign-on nessage in the format

nnK DDI'-s VER m.m

where nn is the nerory size (which must match the CP/M system beirxJ used) , s
is the hardware system which is assumed, correspondirxJ ~ the codes

D Digital Research standard version
M Mt6 version
I IMSAI standard version
o Qnron systems
S Digital Systems standard version

and m.m is the revision n.mt>er.

111

Followin;J the sign on nessage, oor pranpts the q,erator with the character
.. _ .. and waits for input canmaoos fran the console. '!he q:>erator can type any
of several single character canmands, terminated by a carriage return to
execute the camnaoo. F.ach line of input can be line-edited using the standard
CP/M controls

rubout
ctl-U
ctl-C

remove the last dlaracter typed
remove the entire line, ready for re-typing
system reboot

Any canmaoo can be up to 32 characters in length (an autanatic carriage return
is inserted as the 33rd character) , \tthere the first character determines the
canmaoo type

A enter assent>ly language nnemonics with cperands
D di splay memory in hexadecimal and ASCII
F fill nemory with constant data
G be;Jin execution with optional brealq:x:>ints
I set up a standard input file control block
L list nemory using assent>ler nnemonics
M roove a nemory segment fran source to destination
R read p:ogram for subsequent testing
S slbstitute rremory values
T trace p:ogram execution
u mtraced p['ogram 11Dnitoring
X examine and optionally alter the CPU state

The canmaoo character, in s:>me cases, is followed by zero, one, two, or three
hexadecimal values W1ich are separated by camnas or single blank characters.
All DI71' nwneric rutp.1t is in hexadecimal form. In all cases, the canmaoos are
not executed llltil the carriage return is typed at the em of the camnaoo.

At any i;:oint in the debug run, the q:>erator can stop execution of DD1'
using either a ctl-C or G0 (jmp to location 0000H), and save the current
memory image using a SAVE canmaoo of the form

SAVE n filename.OOM

where n is the nmt:>er of p:,.ges (256 byte blocks) to be saved on disk. '!he
nurrber of blocks can be determined by taking the high order byte of the top
load crldress and cawerting this runi:>er to decimal. For example, if the
highest crldress in the Transient Program Area is 1234H then the runt>er of
pages is 12H, or 18 in decimal. 'lhus the ~rator could type a ctl-C during
the debug run, returning to the Console Processor level, followed by

SAVE 18 X.COM

The nerory image is saved as x.mM on the diskette, and can be directly
executed by simply typing the name x. If further testing is required, the
memory image can be recalled by typing

112

DIil' X.CDM

\rtlich reloads p:eviously saved program fran loaction 100H through page 18
(12FFH) • '!be nachine state is not a part of the CDM file, and thus the
program must be restarted fran the beginning in order to properly test it.

II. DIil' CDMM.1\NIS.

The imi vidual canmands are given below in s:>111e detail. In each case, the
operator must wait for the p:anpt character (-) before entering the canmand.
If cmtrol is i:assed to a p:ogram under test, and the program has not reached
a brea)q:oint, control can be returned to DDl' by executing a RST 7 fran the
front p:mel (note that the rubout key slx>uld be used instead if the program is
executing a T or u canmam) • In the explanation of each canmand, the canmand
letter is sb:>wn in a,me cases with mnbers separated by canmas, 'Ylere the
nunbers are represented by lower case letters. 'lbese nunt>ers are always
assumed to be in a hexadecinal rcrlix, am fran one to four digits in length
(longer n.utbers will be autanatically truncated on the right).

Many of the canmams operate UIX)n a "CPU state" which correspoms to the
program ll"lder test. The CPU state b:>lds the registers of the txogram being
debugged, and initially contains zeroes for all registers and flags except for
the p:ogram coonter (P) and stack p:>inter (S), '1.bich default to 100H. '!be
program coonter is sti:>sequently set to the starting address given in the last
record of a HEX file if a file of this form is loaded (see the I am R
camnams).

1. The A (Assent>le) canmam. oor allows inline assent>ly language to be
inserted into the current neioory image using the A ccmnam \rtlich takes the
form

As

\rtlere s is the hexadecimal starting address for the inline assent>ly. DD1'
pranpts the ccnsole with the address of the next instruction to fill, and
reeds the ccnsole, looking for asserrbly language nnenonics (see the Intel 8080
Assen'bly language Reference card for a list of nnenonics) , followed by
register references and q,erands in absolu~ hexadecimal form. F.ach sucessive
load address is p:inted before reading the console. '!be A camnam terminates
when the first enpty line is ir.,ut fran the console.

Upon canpletion of assent>ly language input, the operator can review the
menory segment .using the oor disassen'bler (see the L camiam).

Note that the assen'bler/disassen'bler p:>rtion of DOI' can be overlayed by
the transient p:ogram being tested, in Vlich case the Dor program responds
with an error condition '1.ben the A and L camiams are used (refer to Section
IV)•

113

2. The D (Display) Coounarxi. The D carmand allows the operator to view
the cattents of memory in hexadecimal arxi ASCII foanats. The forms are

D
Os
Ds,f

In the first case, meoory is displayed fran the current display a3dress
(initially 100H), arxi cattinues for 16 display lines. F.ach display line takes
the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc

where aaaa is the display a3dress in hexadecimal, arxi bb represents data
present in 11eIOOry starting at aaaa. The ASCII characters starting at aaaa are
given to the right (represented by the sequence of c·s), \there noo-graphic
characters are i;r inted as a i;:eriod (.) synt>ol. Note that both lJR)er arxi lower
case alphabetics are di splayed, arxi thus will appear as trA;)er case syntx,ls on
a coosole device that supports only u~r case. F.ach display line gives the
values of 16 bytes of data, except that the first line displayed is truncated
so that.the next line begins at an oodress 'i\'hich is a multiple of 16.

'1'11e second form of the D camnarxi shown above is similar to the first,
except that the di.splay oodress is first set to a3dress s. The third form
causes the display to continue fran oodress s through oodress f. In all
cases, the di.splay a3dress is set to the first a3dress not displayed in this
canmand, so that a continuin;;J display can be accanplished by issuing
successive D canmarxis with no explicit a3dresses.

Excessively long displays can be aborted by pushing the rubout key.

3. The F (Fill) canmana. The F canmarxi takes the form

Fs,f,c

where s is the startin;;J a3dress, f is the final a3dress, arxi c is a
hexadecimal byte constant. The effect is as follows: oor stores the constant
c at address s, increments the value of s arxi tests against f. If s exceeds f
then the q;,eration terminates, otherwise the cperation is repeated. Thus, the
fill canmarxi can be used to set a memory block to a specific constant value.

4. The G (Go) Canmarxi. Program execution is started using the G ccmand,
with up to two cptional breakpoint a3dresses. The G commard takes one ot the
forms

G
Gs
Gs,b

114

Gs,b,c
G,b
G,b,c

The first form starts execution of the p:ogram under test at the current value
of the p:ogram crunter in the current machine state, with no breakpoints set
(the only way to regain cootrol in om is through a RST 7 exe~tion) • The
current p:ogram counter can be viewed by typio:;J an X or XP camiaoo. '!be
second form is similar to the first except that the p:ogram counter in the
cur rent machine state is set to a:idress s before execution begins. '!he third
form is tte sane as the second, except that p:ogram execution stops ..-ien
address b is encotmtered (b must be in the area of the p:ogram lllder test) •
The instruction at location b is not executed when the breakpoint is
encotmtered. '!he fourth form is identical to the third, except that two
breakpoints are sp!cified, one at b arrl the other at c. &lCO\mtering either
breakp:>int causes execution to stop, arrl both breakp:>ints are sli>sequently
cleared. The last two forms take the p:ogram COlD'lter fran the current machine
state, aoo set one arrl two breakp:>ints, respectively.

Execution cootinues fran the starting a:Jdress in real-tine to the next
breakpoint. That is, there is no intervention between the starting a:Jdress
and the break a:Jdress by 00'1'. Thus, if the p:ogram tmder test does not reach
a breakpoint, control cannot return to D111' without executing a &ST 7
instruction. Upon encotmtering a breakpoint, 001' stops execution arrl types

*d

where d is the stop address. The machine state can be examined at this p::,int
using the X (Examine) canmarrl. The ~rator must sp!cify breakpoints 'iilich
differ fran the p:ogram counter address at the beginnio:;J of the G carmand.
Thus, if the current p:ogram counter is 12348, then the canmands

and
G,1234

G400,400

both p:oduce an immediate breakp:>int, without executing a'tf'/ instructions
whatsoever.

s. The I (Input) Canmand. The I canmand allows the ~rator to insert a
file nane into the default file control block at SCH (the file control block
created by CP/M for transient p:ograms is placed at this location1 see the
CP/M Interface Guide). The default FCB can be used by the trogram \mder test
as if it ha:l been passed by the CP/M Console Processor. Note that this file
name is also used by 00'1' for reading a:ldi tional HEX and CCM files. The form
of the I camnarrl is

!filename
or

115

Ifilename.filetype

If the second form is used, and the filetype is either HEX or cnt, then
subsequent R cxmnands can be used to read the PJI'e binary or hex format
machine code (see the R camnand for further details).

6. The L (List) camand. The L carmand is used to list asserbly language
mneroonics in a particular p:ogram region. The forms are

L
Ls
Ls,f

The first camnand lists twelve lines of disassent>led nachine code £ran the
current list address. The second form sets the list address to s, and then
lists twelve lines of code. The ·1ast form lists disassent:>led code fran s
through address f. In all three cases, the list address is set to the next
unlisted location in p:eparation for a stbsequent L carmand. Upon
encotmtering an execution breaJqx:,int, the list address is set to the current
value of the i:rogram co.inter (see the G and T carrnands) • la.gain, long typeouts
can be aborted using the rubout key during the list irocess.

7. The M (Move) camand. The M carrnand allows block lll)vement of program
or data areas fran one location to another in memory. The form is

Ms,f,d

where s is the start address of the mve, f is the final address of the mve,
and d is the destination address. Iata is first mved fran s to d, and both
addresses are incremented. If s exceeds f then the mve q;,eration stops,
otherwise the 110ve q;,eration is repeated.

a. The R (Pead) camand. The R carrnand is used in conjunction wi. th the I
camnand to read COM and HEX files fran the diskette into the transient p:ogram
area in i:reparation for the debug run. The forms are

R
lb

where b is an q:,tional bias address "'1ich is added to each p:ogram or data
address as it is loaded. The load q:,eration must not overwrite any of the
system parameters £ran 0008 through 0FFH (i.e., the first ~ge of memory) • If
b is anitted, then b=0000 is assumed. The R canmand requires a p:evious I
canmand, SP!cifyirq the nane of a HEX or COM file. The load address for each
record is obtained fran each iroividual HEX record, "'1ile an assumed load
address of 1008 is taken for COM files. Note that any rn.mt>er of R canmands
can be issued following the I canmaro to re-read the p:CXJram 1.11der test,

116

assumirg the tested pr:ogram does not destroy the default area at SCH.
Further, any file s~cified with the filetype ·OOM" is asslllled to contain
machine code in pure binary form (created with the LOAD or SAVE camnand), and
all others are asslllled to contain machine code in Intel hex format (produced,
for example, with the ASM canmand).

Recall that the camnand

Dor filename.filetype

which initiates the DDI' program is Equivalent to the carmands

DDl'
-Ifilename.filetype
-R .

Whenever the R canmand is issued, ror responds with either the error indicator
"?" (file cannot be q,ened, or a dlecksllll error occurred in a HEX file), or
with a loa1 nessage takirg the form

NEXT PC
nnnn m>P

where nmn is the next cr:ldress followi.1'¥3 the loaded pr:ogram, and m,p is the
assumed pr:ogram coonter (1008 for CCJ,1 files, or taken fran the last record if
a HEX file is ~cified) •

9. The S (Set) C.ommand. 'Ihe s canmand allows meJOOry locations to be
examined and q,tionally altered. 'Ihe form of the camiand is

Ss

where s is the hexadecimal starting cr:ldress for examination and alteration of
meoory. DDI' respooos with a rumeric pr:anpt, givirg the meJOOry location, alorY;J
with the data currently held in the meioory location. If the q,erator types a
carriage return, then the data is not altered. If a byte value is typ:!d, then
the value is stored at the pr:anpted cr:ldress. In either case, m.r continues to
pranpt with successive cr:ldresses and values mtil either a ~riod (.) is typed
by the q,erator, or an imalid input value is detected.

10. 'Ihe T (Trace) canmand. 'Ihe T camnaoo allows selective tracing of
program execution for 1 to 65535 pr:ogram steps. 'Ihe forms are

T
Tn

In the first case, the CPU state is displayed, and the next pr:ogram step is
executed. 'Ihe pr:ogram terminates imnediately, with the termination address

1 1 7

displayed as

*hhhh

where hhhh is the next address to execute. 'Ihe display address (used in the o
canmam) is set to the value of H and L, and the list address (used in the L
camnand) is set to hhhh. The CPU state at [X'ogram termination can then be
examined using the X camnand.

The second form of the T canmand is similar to the first, except that
execution is traced for n steps (n is a hexadecimal value) before a [X'ogram
breaJqx:>int is ocx:urs. A breaJq:x:>int can be forced in the trace node by typing
a rubout character. The CPU state is displayed before each [X'ogram step 1s
taken in trace node. 'Ihe format of the display is the same as described in
the x canmam.

Note that [X'ogram tracing is discontinued at the interface to CP/M, and
resumes after return fran CP/M to the i;rogram lllder test. 'Ihus, CP/M
ftmctions which access I/0 devices, such as the diskette drive, run in
real-time, avoiding I/0 timing [X'oblems. Programs running in trace node
execute approximately 500 times slower than real time since oor gets control
after each user instruction is executed. Interrupt [X'ocessing routines can be
traced, but it must be noted that camnams ~ich use the breakp:>int facility
(G, T, am U) accanplish the break using a RST 7 instruction, ~ich means that
the tested frogram cannot use this interrupt location. Further, the trace
mode always runs the tested [X'ogram with interrupts enabled, \<bich may cause
problems if asynchronous interrupts are received during tracing.

Note also that the q:ierator sh:>uld use the rubout key to get control back
to oor during trace, rather than executing a RST 7, in order to ensure that
the trace for the a.irrent instruction is canpleted before interruption.

11. The u (Untrace) canmam. 'Ihe u carmand is identical to the T command
except that intermediate p:ogram steps are not displayed. 'Ihe 1.ntrace node
allows fran 1 to 65535 {0FFFFH) steps to be executed in nonitored node, and is
used [X'incipally to retain cmtrol of an executing frC>gram while it reaches
steady state caidi tions. All conditions of the T command apply to the u
camnam.

12. The x (Examine) CClnmand. 'Ihe X camiand allows selective display and
alteration of the a.irrent CPU state for the [X'ogram under test. The forms are

X
xr

where r is one of the 8080 CPU registers

C Carry Flag (0/1)
z Zero Flag (0/1)

118

M Minus Flag
E F.ven Parity Flag
I Interdigit carry
A Accumulator
B BC register pair
D IE register pair
H BL register pair
S Stack Pointer
P Program Counter

(0/1)
(0/1)
(0/1)
(0-FF)
(0-FFFF)
(0-FFFF)
(0-FFFF)
(0-FFFF)
(0-FFFF)

In the first case, the CPU register state is displayed in the format

CfZfMfEfif A=bb B=dddd D==dddd H=dddd Sadddd P-dddd inst

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a double byte
quantity correspondirg to the register pair. '1'he •inst" field CXX'ltains the
disassent>led instruction viich oocurs at the location a:ldressed by the CPU
state's Irogram coonter.

The second form allows display ~ q>tional alteration of register values,
where r is one of the registers given above (C, z, M, E, I, A; B, D, B, s, or
P) • In each case, the flag or register value is first displayed at the
console. '.Ibe oor program then acx:epts input fran the console. If a carriage
return is typed, then the flag or register value is not altered. If a value
in the Iroper range is typed, then the flag or register value is altered.
Note that BC, IE, and HL are displayed as register pairs. Thus, the q>erator
t~s the entire register p:iir vien B, c, or the BC pair is altered.

III. IMPID1EN!'ATIOI l'DrES.

The organization of DI1l' allows certain n<Xl-eSSential p>rtions to be
overlayed in order to gain a larger transient IZ"ogram area for debuggirg large
programs. The DOI' program coosists of two parts: the DI1l' nucleus and the
assenbler/disassenbler nodule. '!be DOI' nucleus is loaded 011er the Console
Canmam Processor, and, although loaded with the IDr rucleus, the
assent>ler/disassent>ler is 011erlayable mless used to asseuble or disassent>le.

In particular, the BIXl:3 address at location 6B (address field of the JMP
instruction at location SH) is nodified by DI1l' to a:ldress the base location of
the DOI' nucleus viich, in turn, contains a JMP instruction to the mn;. Thus,
programs ,ciich use this a:ldress field to size naoory see the logical end of
menory at the base of the 001' nucleus rather than the base of the BIXS.

The assenbler/disasserrbler DDdule resides directly below the DOI' nucleus
in the transient Irogram area. If the A, L, T, or X conmams are used during
the debuggirg Jrooess then the oor program again alters the address field at
6H to inclooe this nodule, thus further reducirq the logical end of memory.
If a Jrogram lOl!lds beyooo the begimirxJ of the asserrbler/disassad:>ler nodule,
the A and L camnams are lost (their use Iroduces a •1• in response) , and the

119

trace ard display (T and X) camnands list the •inst• field of. the display in
hexadecimal, rather than as a decoded instruction.

N. ~ EXM4PL8.

The followi~ example smws an edit, assent>le, and debug for a simple
program which reads a set of data values and determines the largest value in
the set. The largest value is taken fran the vector, am stored into "IAK;E•

at the termination of. the irogram

ED SCAH.AS!J ~

• l /J,,J, f.tJ,l__ ,~ i,tc-
'~l .2.!§ ~t !!1!i ~-l~RT OF TRANSIENT AREA

!!,1! p, LEN ;LENGTH OF YECTOR TO SCAH; J,
lli W ;bARGER-RU YALU£ ~Q FAR

U-2?--P ... ~-O-L W H> YECT ;BASE Of YECTQRJ 1

L.2if..i\ .!!.Q.! ~ ; GET YA LUE.,
.. W -'-. ; L88iE8 YA LUE I H- C?.,

~c)itl~ NFOUHD ; JUNP IF LARGER VALLIE NOT F"Ol!ND
!.. ~ HEW LARGEST YALUE, STORE IT TO C 'ti

l!.2!. ~, '
. HFOUNO-: DI NCRl(,!!8 ; TO HEl<T ELEl'IEHTi

;"ORE TO SCAM?
Jtij Tul2f. . ; FOR 8HQTHER.1 ,1

Cruk SoU(~
1',"'va~ · l,lV\dtr{,~~
C~<dclet'S ~p~ l

.J..

LOOP:

;

HFOUHD:

END OF SCAN, STORE c,
~ ~yt).n'l~

NOY A,C ;GET LARGEST VALUE,
STA LARGE., ,
JNP .a. ; REBQQIJ • J" YtV(~ l'olnor

rt.tun\.. TEST
ll
EQU
.ll
..sil,1

OR&
NYI
NYI
l)CJ
NOY
sue
JHC
NEY
"OY
I HJ<
DCR
JHZ

DATA
2,8,4,3,5,6,1,51
«-YECT ;LEHGTH~

..1 ;LARGEST YALUE OH EKITJ

188H ;START OF TRANSIENT AREA
B>LEH ;LENGTH OF YECTOR TO SCAN
C,8 ;LARGEST YALUE SO FAR
H,YECT ;BASE OF VECTOR
A,N ;GET VALUE
C ;LARGER VALUE INC?
HFOUHD ;JUNP IF LARGER YALUE MOT FOUND.

LARGEST YALUE, STORE IT TO C
C,A
H
8
LOOP

;TO HEl<T ELENENT
;NORE TO SCAN?
; FOR ANOTHER

120

END OF SCAN, STORE C
"OY A,C ;CET LARGEST YALUE
STA LARGE
JNP 8 ;REBOOT

TEST DATA
YECT,
LEH
LARGE:

DB 2,0,4,3,5,6,1,5
EQU $-YECT ;L[HGTH
DS 1 ;LARGEST YALUE OH EXIT
END •
.- ~J.tl tcM

CP ✓ N ASSE"BLER - YER 1.8

0122
002H USE FACTOR

·END OF ASSENBLY

TYPE ·scAM. PRN
- l

Codee ~.J ~ Cult
r Sou.<rt rftBYc,,\

8180 8688 ✓
8182 8E80
8184 211981
8187 7E
8188 91
8189 D28D81

\ ORG 180H ;START OF TRAHSlEHT AREA
NYl B,LEH ;LENGTH OF VECTOR TO SCAN
NYI C,0 ;LARGEST VALUE SO FAR
LKI H,YECt ;BASE OF VECTOR

LOOP: NOY A, N ; GET w:ILUE
SUB C ;LARGER VALUE IH C?
JHC HFOUHD ;JU"P lF LARGER VALUE HOT FOUND
NEW LARGEST VALUE, STORE IT TO C
NOY C, A 818C •F

8181 23
818E 85
018F C28781

HFOUHD: IHX H ;TO NEXT ElEflEHT
;NORE TO SCAN?
;FOR ANOTHER

DCR 8
JNZ LOOP

i

J END OF SCAN, STORE C
8112 79 NOY A, C ;GET LARGEST 't'ALUE
8113 322181 STA LARGE
8116 C3~r...\i;, J"P 0 ;REBOOT

CctV.h ' !J ;
1ti.butaf ~;. TEST DATA

8119 8280840385YECT, DB 2. e, 4, 3, s, 6, 1. s
0888 • ·~ LEN EQU $-VECT ; LENGTH·
e 1 2 1 ValUt ~ LARGE: DS 1 ; LARGEST VALUE ON EXIT
8122 Gt~ EHD

A>

121

lli SCAN. HEX~

161< DDT YER 1. 0
NEXT PC
~ ~ 21,_e_0_ee __ la.1'- load-~,.. l -~

C020N8E010 A=80 8=0080 D=8000 H=0000 S=0100
-L100J

0100
0182
0104
0107
0108
0109
010C
0100
"f 10E
910F
8112
-L -,

NYl
NYl
LXI
NOY
SUB
JHC
NOY
l HX
DCR
JHZ
NOY

B,08
C,00

A, N
C
010D
C,A
H
8
0107
A,C

0113 STA 0121
0116 JNP 0000
8119 STAX B
011A HOP
0 t 1 B 1 HR B A ldl-e WIJY!-
011 C I HX 9 Y\\odt\Y\t. C£de,
: ! ! : ~~~ :. 0 i {~~?~mm
0120 DCR 8 e.v& a-\ lotafo" \lb

C-PC. ~~d.
P=0100 MVI 8,08;

~ .~~~
-to txtak a\ Pt='OO

0 1 2 1 L XI D, 2 2 0 0 'u p L \
0124 LXI H, 0200 UJl"t\A Q JM lD ncroJ · .
-llll e'«1tr ·,.t~ ~~~ modt, io e~ -ik ~ -b COOO \ittt> (). ~1 1, w\tt<11

~ \>itU c(LIQ. ~ pt°'YO.M u~u ~~ -\o '(!.in'M- .\o ovr Lt , 'b"
0116 RST 7 , . 1.J

~ \~ evu ext Ct,fflD..

e 1111 l-:,~_,\c co.1n·'tP reuu.-. .,\ops ~Y, mote.) ·
-L l t 31 u,i\, (JXU at l\'!" ,lo~~ ~ 7 I.UlS ff~j \nsek,(
0113 STA 0121 ~l'A l)(QCt ~ J'Mf
0116 RST 07 .-'

122

8117 NOP
1118 HOP
8119 STAX 8
81lA HOP
8118 JHR B
811C INK 9

•

-)(
-i lo«t.tl vc.,ws

C8Z8N8E8I8 A•80 8=0080 D=8000 H=0000 S=0100 P=0100 KYI B,08

-I...1 &I~ 'FYD!r~-h- 0'1l.-Slcf. i~~ Cfu ~, bef«e. J k ~-kcl
C8Z8N8E8I0 A=80 9=0880 D=~000 H=0000 S=0100 P=0100 NYI B,88•0102

-J_~ Utu Ott~ '1!9a;h {Nit°'"'" g) ~ bi~\"-+ _J
C0Z8N0E010 A•08 9=0880 D=0000 H=0000 S=0100 P=0102 NYJ C,00•0104

-!. i 1r«e a.10.;V\ (~el~~ c ,~ d1CArrd)
C0Z0N0E018 A•00 9=0880 D=8000 H=0000 S=0100 P=0104 LXI H,0119*8187

-11., lro.ct -Kivtt ~s
C0Z8N8E810 A•88 9=0880 D•8000 H=0119 S=0100 P=8107 MOY A,N
C0Z8N8E010 A•82 8=8800 D=0000 H=0l19 S=0100 P=0108 SUB C ·
C0Z0~8E0I1 A=02 8=8800 D•0000 H=0119 S=0100 P=0109 JHC 810D•018D
-D119 ' J 1· ~1 _J
-~ '()l,Q~ QOf!I av-nn <n ll~M.. d.$. 6.~ brttAtft1~ o:\ iODU

0119 02 00 04 03 05 06 01 f'.'r~~~.. _,,_..-r:;~w,r--- Cl
0120 05 11 00 22 21 80 02 7E EB 77 13 23 EB 08 8 B1 ... •!.."'.W.I .. ,~.
8138 2 27 01 C3 03 29 00 00 00 08 00 00 00 08 0 00 .' ...)
8140 88 80 00 08 00 80 80 00 00 08 00 00 00 08 00 00
0158 88 00 80 08 08 80 00 00 00 00 00 00 00 08 00 00
8160 88 88 00 00 08 88 80 80 00 00 00 00 00 08 00 00
0170 80 80 00 08 08 00 00 00 00 00 00 00 00 00 00 80
0180 08 80 08 08 08 80 88 80 00 00 00 00 00 00 08 08
8198 88 88 88 08 08 80 08 00 00 00 00 00 00 08 08 80
81A8 88 08 80 88 08 88 80 80 08 00 00 00 00 08 00 80

.
in .J..: is a · .fJ.:..:J · · · ·
.U.t:{IJ • . \ir~

· lk· ASCII ~-\(, ,/ •'· .
:~~f~l~~~~:::
.\'\0>1."'0f"Opl.1'.
elwr4UU'$

0188 08 88 88 08 08 00 00 80 00 00 00 00 00 08 08 00
81C8 88 80 88 08 08 80 88 88 08 00 00 00 00 08 08 00

-!., Co.«M CP11 *-\t- +
C8Z8N8E011 A•82 8•0888 D•8088 H=0119 S=0100 P=010D IHX H

-!.!, -r,"" (~es ~ eu,,ts.d CPI! s~
C0Z8N8E8I1 A•82 8•8888 D•8008 H=0119 S=0100 P=010D IHX
C0Z0N8E811 A•82 8=8880 D•8008 H=011A S=0100 P=010E DCR
C0Z8N8E8I1 A=82 8=8780 D•8880 H=011A S=0100 P=010F JHZ
C8Z8H8E8I1 A=82 8=8700 D•8008 H=011A S=0100 P=0107 NOY
C0Z8H8E811 A•00 8•8788 D•8800 H=011A S=0100 P=0108 SUB

U5 • ' •
- -1 '"frc2tt ""~~ \l4iW\5 \v..-b.tt!~ ~
C0Z1N8E1J1 A•80 8•8788 D•8888 H=011A S=0100 P=0109 JHC

-!., CAL ~ o.t tt.dof us)
C0Z8H8E111 A•84 8•8680 D•8800 H=0118 $•0100 P•8188 sue C

123

-§.., k11.cn ?r~taN -t~ Cl.lntk"t fc w...fil C/>IIA'elth~ Ct"' reA!--h~>
• 0 11 6 YXtAleo~J (l.t ll&M I ~, ~ ecec».-1-uis R'Sf 1 ~ r~£4ui, ~
-~, reu ~k at- ~ « pn;g~
C8Z1"8E1Il A=88 9=8880 D=0088 H=8121 S=0100 P=0116 RST 97

- ~, l~-l~ o.vr£ ~,l ~ fol.U\ffi'

P=e11, ue.,

-x
~ .

C8ZHl8ElI1 A=80 9=0000 D=8008 H=012J S=0100 P=0100J'N\II 8,tO, .,_~•"'

-ll!i ,ru lO ~l) ~ ,tt~t dtD-~ ~ ~ ~ A(.l
C021N8E1I1 A=80 8=0000 D=8 0 H=012J s- 11ff P=fi00 M\II 8,88
C8Z1N8E1I1 A=80 8=8888 D 008 H=01 S=8100 P=8102 N\II C,00
C0ZlN8E1Il A=80 8=080 =8008 H 121 S=0100 P=0104 LXI H,8119
C8Z1N8E1l1 A=j.@_ B- 8!,l D= =0119 5=0100 P=0107 NOY A,N
C0Z1N8E111 A=<@.!) =8Qj1 =8800 H=0119 S=0100 P=0108 SUB C
C8Z8N8E8I1 A=82 8=8888 D•8898 H=0119 S=0100 P=8109 JH 010D
C8Z8N8E0If A=82 8=8880 D=8008 H=0119 S=0108 P=010D IH H
C8Z8N8E811 A=82 8=8880 D=8008 H=011A S=0100 P=010E DCR B
C0Z8N8E0Il A=82 8=8780 D=8008 H=011A S=0100 P=010F JHZ 0107
C0Z8N8E8Il A=82 9=0700 D=0000 H=011A 5=0100 P=0107 MOY A,"
C0Z8N8E8I1 A=80 9=0708 D=8008 H=011A S=0100 P=0108 SUB C
C0ZlN8E1I1 A=80 8=8780 D=0000 H=011A S=8100 P=0109 JHC 010D
C0ZlK8E1I1 A=80 8=8780 D•8808 H=011A S=0100 P=010D IHX H
C821N8E111 A=80 8=8780 D=8000 H=0118 S=0100 P=010E DCR 8
C0Z8N8E1Jl A=08 8=8600 D=8000 H=8119 S=0100 P=810F JHZ 0107
C0Z8N8E1I1 A=00 8=0688 D=0000 H=011B S=0100 P=0107 "OY A,"•0108

-A 10 9 i1 ~ d. ""1t eoAdt •. ,'.t\o '1'1.ta#. ~<ttL ~vt ~u -Ht<-
01 e, JC 10DJ -\-\., Wdeklltf~ (_ A 'L" • .,

-h) CWI~ ~ \14. j'(ffl\ I\ I.WO '- 5MC(ft ,e,.
01 ec, j"~ -to '1"c.. Sw.ct 4is cak l.,tllS n6(- t~w..-kl.,
-il 1 45¼ wr ~~{ o. v~ <if ~~- CifPttt~ ~ -Htt .r~c ~~IA

-ti.e ~ p,Ojm,t\ un, l,c s.:tvtd i,,,.~ !,al,\ A.. J"C.. -'~

SAYE 1 SCAN. co"~ 'f\.~tll YtS~s ~ t,r'it Rlf,t, 'SO sa~ 1, ~.

A>DDT SCAN. co";, 'Kt...+ tor (N~ -fi.t ~v«I 'tht~ 1~1)Q1~1lrt~ ~~
161(DDT YER 1. 0
HEXT PC
0288 8188
- L 18 0 J L~t ~ c,J.i
0108 NYI 9,88
0102 MYI -C,00 •
f104 LXI H, 0119 1l<~t<M~ Po.~ i, y1~,J l~ X,~M
8187 NOY A,M~
8188 SUB C
0189 JC 010

124

118C "OY C1A
818D lHX H
818E DCR 8
818F JHZ 8187
8112 "OY A.,C
-XP
-J

P•tu ee1

-r 1 el T ~t 1"t> ~~ l.,o&A> ~tt! vets~ oPU• 'M:t ~ Na,rd .f. A-b c
C828"8E818 A=88 8•8088
C828"8E818 A=88 8•8888
C8Z8N8E818 A=88 8=8888
C828NBE818 A=8 8=8888
C8ZBN8E8I8 A_e__.....-8•8888
C8Z8N8E8I1 A•82 8 888
C8Z8NBE811 A•82 8=8 i
C8Z8N8£8I1 A•82 8=0 8
C8Z8N8E811 A=82 8=88 2
C828NBE811 A•82 8=8782
C828N8E811 A=82 8=8782
C0Z8N8E811 A=88 8=0782
C1Z8N1E818 A=FE 8=8782
C1Z8N1E8l0 A=FE 8=8782
C128N1E818 A=FE 8=8782
C120N8E111 A=FE 8=8682
-x -1

D=8089
D•8888
D=8888
D=8888
D•8889
D•88
D 88
D=8888
D=l888
D=8088
D=8888
D=8088
D=8808
D=8880
D=8800
D=8008

•8188 NYI 8.,88
$=81 P•8l82 NYJ c.,ee
S- 188 P•8184 LXJ ij.,8119

=8188 P•8187 NOY A,N
S=8188 P•8188 SUB C
S=8188 P=8189 JC 818D
S=8188 P=818C NOY C,A
S=8188 P•818D IHX H
S=8188 P•818E DCR B
S=8188 P=818F JHZ 8187

H=011A S=8180 P=8187 NOY A,"
H=011A S=8180 P•8188 SUB C
H=011A S=8100 P•8189 JC 818D
H=011A S=0100 P=818D JHX H
H=0118 S=0100 P=818E DCR 8
H=8118 S=8188 P=818F JHZ 8187•8187

~fbirl olw I(,~
C1Z0N8E1ll A=FE a~e682 D=8008 H=8118 S=0180 P=8187 "OY A.,N

-G, 1 0 8 i ~UVt -f ~ CJJ.,vc .d- Pl a"'l ~e~po;.,t .+ locil-l

C1Z0NBE1Il A=84 8=8682 D=8088 H=811B S=8188 P=8188 SUB

-!/ 4i>l1A4ft Slcf f« a_~ ~
C128"8E1I1 A=84 8=8682 D=8088 H=8118 S=0188 P•i188 SUB
-T -v
C0Z0"8E8Jl A=82 8=8682 D=8008 H•8118 S•8188 P=8189 JC
-4
C0Z8H8E811 A•82 8•8682 D=8088 H•8118 S=8108 P•818C HOY

•0116

-~l

~~ -\o ~~~

C

C., A

C8Z1H8E1l1 A•83 8=8883 D•8888 H=012l S=8188 P•8116 RST 87

-!.!!.!, la,k. ax -It..~ ~ d
111At&E'

8 l 21 8 3_, khotlS \ble&t, /
125

0122 88J

8123 22.,

0124 21,

0125 091
8126 82J. / ~'Ad&-11.t S c..-o.,.J

0127 7E .!~

-!:.!.!!~
0108
0102
0104
0107
0108
0109
018C
010D
010E
010F
0112
-L
-J
0113
0116
0117
0118
0119
011A
0118
011C
011D
01 lE
0128
-XP

NYI B,08
NYI C,00
LXI H, 0119
NOY A,"
SUB C
JC 010D
NOY C,A
I HX H
DCR 9
JHZ 0187
NOY A,C

STA 0121
RST 07
HOP
HOP
STAX 8
HOP
IHR
I MX
DCR

8
8
8

NYI 8,01
DCR 8

GvlA\)ikc«'e

-~
P•8116 108 Qestl-~ fe_

-J

-1J '5,~lt ~, c1vul wo\d,. ~ v"llds
C0Z1NBE111 A=03 9=0083 D=8008 H=0121 S=0100 P=0100 MYl 9,08•8192
-T -J
C0Z111BE111
-T -,
C0Z11'10E111
-T -,
C021H0E1I1

A=03

A=03

A=03

8=0883 D=8008 H=0121 S=0100 P=0102 N'/I C,00•0104

c~'4" 14,~·,a-
8=080~000 H=0121 S=0100 P=0104 LXI H.,0119•0107

,~a~l~~t
8=0800 D=0000 H=0119 S=0100 P=0107 MOV A, 11 •B 1 08·

126

·-T -~
C8ZUl8Ell 1 -1.,
C8Z8t18E811
-T -J
C8Z8t18E811
-T -~
C8Z8118E811
-T -,
C828t18E811
-T -J
C0Z8118E811
-T

-.1

t0Z0N8£011
-·1,
C8Z8M8E8Il
-T -J
C128N1E818
-T -,

,W~~ ~OIIG~1'~
A•82 8•8888 D•8088 H•8119 $=0108 P=0108 SUB

A•82 8•8880 D•8808 H=0119 S=0100 P=0109 JC

A•82 8=8888 D•8888 H•0119 S=8180 P•818C NOY

1 .fw- ~"""' ~Al -It c. tntd.!,
A•82 8=8882 D•8008 H•0119 S=8100 P=810D JHX

A•82 9a8882 D•8888 H•01 U S•0188 P•818E DCR

A•82 9=8782 D=8888 H•811A S•8188 P•818F JHZ

A•02 8=0702 D=0000 H=011A $=0100 P=0107 MOY

r ~ • ~ ~, • ...,tct"' ,.
A•88 8=8782 D•l888 H•811A S•8180 P•8188 sue

r ,cd,n-.c:l d..w,es ~ \Jo.W. l.Jk,dA w..s lorJ.t~ ///
A•FE 8=8782 D•8888 H•011A S=8180 P•8189 JC

C•0189

010D•818C

C,A•818D

H•818E

8•818F

8187•8187

8 UD•818D

C1Z8M1E818 A•FE 8=8782 D•8888 H•011A S•0188 P•818D IHX H•818E
-L188
-,J

8188 NYI
8182 NYJ
8184 LXI
8187 NOY
8108 SUB
8189 JC
818C NOY
918D JH><
818E DCR
818F JHZ
8112 "OY
-A1ee,

8188
C188
H1 8119

~# "-.. -~ ~,Jd ~'11! ~ o. CMP so-&rl- \'t96tr A
818 D lAkMfd \\It \ot cltth'Ostd.
C1A
H
B
8187
A1C

0108 CNP .c,
8109,

-.§.!._, s\b,wr.G,,sNf

.... .,

SA•,fE 1 SCAN. CON ,1

A)DDT SCAM.CON.1

161< DDT YER 1.0
NEXT PC
0208 8188

-~~

P=0i eel

-L116.1

0116 RST 07
8117 HOP
0118 MOP
0119 STAX B
011A HOP
- (YIJoerd)

~ a.t ~ fo sa ·,f it we6 ?-1w~ Loait&
(\~ ~~ocLt 4~ u,~ y<.Jo,u±)

- G > l.16 J ~(.(¥\ {~ lOtM .fo (:,~\7~·hM
•0116

-~ .1 \.. ~l ttt Ca~ (oa:ult~I i)po)
Cla

-~, loo~ a.t c.ru calzd-t.
C1ZlN8ElJ1 A=86 8=8086 D=8088 H=0121 S=0100 P=8116 RST 07

-!!llil loei crf' laYJt' .,. it affqfS -ti> l,e c.ntlt:
0121 86.J

0122 eeJ

0123 22 •J

;LARGER VALUE lH C?

;LARGER VALUE IH C?

*l d~C NFOUND ;JUNP IF LARGER VALUE NOT FOUND
*SH c.:0;.~ L T,)

JC HFOUND ;JUHP IF LARGER VALUE ~OT FOUND

128

Ast1 SCAM. AA-r.'J- ~-a.~. ~d~ ~u 4rom dl4-A
CP/1'1 ASSE"BLER - ','ER 1. 0 ~-io"ttl~ t~ MO 'Pllkf-h~)
0122
002H USE FACTOR
EH»· OF ASSENBL Y

DD r SCAN. HEX;,.> i--hot d~1tr 1'0 C~t~ ~
161< DDT YER
NEkT PC
0121 8808

1. 0

-L116-1

0116 JNP 0000 et.ttk ~ &&uve 61d.is ~-.u At 111,11
0119 STAX 8
811A HOP
8118 lHR 8
- {,uWt>
- G l 8 0 • 1 16 ~ (;, ~ loci ;~~U\j Wl~ \Nt#P~-i~ ~ tM4
•0116 ~tAkftt-d-~
-!l!,! J I.DO~ at .. l.At'E.11 eo.,u! \biut C-P.d-cl

0121~2 7E EB 77 13 23 EB 08 78 91 .. •!..".U.I .. X.
F.I 1 Je c2 21 01 C3 eJ 29 00 00 0e ee 00 00 00 00 00 00 . , ... >
01 • 0 00 ee 00 00 ee ee ee 00 ee ee 00 0.e 00 00 00 00

-{~) ~ loa~ -le.,~
-£_!~ -st,p U>T I ~ 55S~ Cof'l9'dc

129

CP/M 2.2 INTERFACE G UIOE

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or change9 •

TRADEMARKS

CP/M is a registered trademark of Digital Research.

CP/M 2.2 INTERFACE G UIOE

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

Table Of Contents

CP/M 2.2 Interface Guide

1. lntroduction ••••••••••••••••••••••••••••• 131
2. Operating System Call Conventions •••••••• 133
3. A Sample File-To-Fi le Copy Program ••••••• 159
4. A Samp I e Fi I e Dump Ut i I it y ••••••••••••••• 164
5. A Sample Random Access Program ••••••••••• 167
6. System Function Sunmary •••••••••••••••••• 176

l. INTRODOCTION.

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/0 facilitie~ of the system.

CP/M is logically divided into four parts, called the Basic I/0
System (BIOS), the Basic Disk Operating System (BOOS), the Console
command processor (CCP), and the Transient Program Area (TPA). The
BIOS is a hardware-dependent module which defines the exact low level
interface to a particular computer system which is necessary for
peripheral device I/0. Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitled "CP/M Alteration Guide").
The BIOS and BOOS are logically combined in.to a single module with a
common entry point, and referred to as the FOOS. The CCP is a
distinct pr·ogram which uses the FOOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device. The TPA is an area of memory (i.e., the portion which is not
used by the FOOS and CCP) where various non-resident operating system
commands and user programs are executed. The lower portion of memory
is reserved for system information and is detailed later sections.
Memory organization of the CP/M system in shown below:

high
memory

FBASE:

CBASE:

I
I
I

FOOS (BDOS+BIOS)

CCP

I TPA
I

TBASE: I

1 system parameters

BOOT: I

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
"CP/M Alteration Guide." All standard CP/M versions, however, assume
BOOT = 0000H, which is the base of random access memory. The machine
code found at location BOOT performs a system "warm start" which _loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)
131

to return control to CP/M at the command level. Further, the standard
versions assume TBASE = BOOT+0100H which is normally location 0100H.
The principal entry point to the FOOS is at location BOOT+0005H
(normally 00058) where a jump to FBASE is found. The address field at
BOOT+0006H (normally 0006H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP is
being overlayed by a transient program.

Transient
follows. The
1 ines fol lowing
forms:

programs are loaded into the TPA and executed as
operator communicates with the CCP by typing command

each prompt. Each command line takes one of the

command
command file!
command file! file2

where "command" is either a built-in function such as DIR or TYPE, or
the name of a transient command or program. If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

command.COM

If the file is found, it is assumed to be a memory image of a
which executes in the TPA, and thus implicitly originates at
memory. The CCP loads the COM file from the disk into memory
at TBASE and possibly extending up to CBASE.

program
TBASE in
starting

If the command is
the CCP prepares one
system parameter area.
to access files through
section.

followed by one or two file specifications,
or two file control block (FCB) names in the

These optional FCB's are in the form necessary
the FOOS, and are described in the next

The transient program receives control from the CCP and begins
execution, perhaps using the I/0 facilities of the FOOS. The
transient program is "called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-1 is free.

The transient program may use the CP/M I/0 facilities to
canmunicate with the operator's console and peripheral devices,
including the disk subsystem. The I/0 system is accessed by passing a
"function number" and an "information address" to CP/M through the
FOOS entry point at BOOT+000SH. In the case of a disk read, for
example, the. transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FOOS. The
FOOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in below.

(All Information Contained Herein is Proprietary to Digital Research.)

132

2. OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions listed below, however, are more simply accessed
through the I/0 macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language Manual and Applications Guide."

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/0, and
disk file I/0. The simple device operations include:

Read a Console Character
Write a Console Character
Read a Sequential Tape Character
Write a Sequential Tape Character
write a List Device Character
Get or Set I/0 Status
Pr int Console Buffer
Read Console Buffer
Interrogate Console Ready

The FOOS operations which perform disk Input/Output are

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Randan or Sequential Read
Randan or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set OMA Address
Set/Reset File Indicators

As mentioned above, access to the FOOS functions is accanplished
by passing a function number and information address through the
primary entry point at location BOOT+0005H. In general, the function
number is passed in register C with the information address in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A= Land register B = H upon return in all cases. Note that
the register passing conventions of CP/M agree with those of Intel's
PL/M systems programming language. The list of CP/M function numbers
is given below.

(All Information Contained Herein is Proprietary to Digital Research.)

133

0 System Reset
1 Console Input
2 Console Output
3 Reader Input
4 Punch Output
5 List Output
6 Direct Console I/0
7 Get I/0 Byte
8 Set I/0 Byte
9 Pr int String

10 Read Console Buffer
11 Get Console Status
12 Return Version Number
13 Reset Disk System
14 Select Disk
15 Open File
16 Close File
17 Search for First
18 Search for Next

19 Delete File
20 Read Sequential
21 Write Sequential
22 Make File
23 Rename File
24 Return Login Vector
25 Return Current Disk
26 Set OMA Address
27 Get Addr(Alloc)
28 Write Protect Disk
29 Get R/0 Vector
30 Set File Attributes
31 Get Addr(Disk Parms)
32 Set/Get User Code
3 3 Read Random
34 Write Random
35 Compute File Size
36 Set Random Record

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location 0000H), it
is sufficiently large to make CP/M system calls since the FOOS
switches to a local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT• 0000H):

BOOS EQU 0 0 0 SH ; STANDARD CP /M ENTRY
CONIN EOU 1 ;CONSOLE INPUT FUNCTION . ,

OR:i 01008 ; BASE OP Ti?A
NEXTC: MVI C,CONIN ;READ NEXT CHARACTER

CALL BOOS ;RETURN CHARACTER IN <A>
CPI '*. 1END OP PROCESSING?
JNZ NEXTC ;LOOP. IP NOT
RET ; RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic cat~ory of a particular
file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research.)

which have been established, although they are generally arbitrary:

ASM
PRN
HEX
BAS
INT
COM

Assembler source
Pr inter Listing
Hex Machine Code
Basic Source File
Intermediate Code
CCP Command File

PLI
REL
TEX
BAK
SYM
$$$

PL/I source File
Relocatable Module
TEX Formatter Source
ED Source Backup
SID Symbol File
Temporary File

Source files are treated as a sequence of ASCII characters, where each
"line" of the source file is followed by a carriage-return line-feed
sequence (0DH followed by 0AH). Thus one 128 byte CP/M record could
contain several lines of source text. The end of an ASCII file is
denoted by a control-Z character (lAH) or a real end of file, returned
by the CP/M read operation. Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is used to terminate read
operations.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from 0 through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area. Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values. Although the
decanposition into extents is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent is automatically accessed in both sequential and random
access modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+005CH (normally 005CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/O is provided by CP/M
at location BOOT+0080H (normally 0080H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of
33 bytes for sequential access and a series of 36 bytes
that the file is accessed randanly. The default file
normally located at 005CH can be used for random access
the three bytes starting at BOOT+007DH are availabl~ for
The FCB format is shown with the following fields:

a sequence of
in the case
control block
files, since
this purpose.

(All Information Contained Herein is Proprietary to Digital Research.)

135

-----~--~-----------ldrlfllf21/ /lf81tllt21t31exlslls21rcld81/ /ldnlcrlr0lrllr21 --.--------------
•• 1112 ••• 88 89 18 11 12 13 14 15 16 ••• 31 32 33 34 35

where

dr drive code (8 - 16)
a•> use default drive for file
1 •> auto disk select drive A,
2 •> auto disk select drive B,
• • •
16•> auto disk select drive P.

fl ••• f8 contain the file name in ASCII
upper case, with high bit• 8

tl,t2,t3 contain the file type in ASCII
upper case, with high bit• e
tl', t2', and tl' denote the
bit of these positions,
tl' • l •> Read/Only file,
t2' • l •> SYS file, no DIR list

ex contains the current extent number,
normally set to 88 by the user, but
in range a - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

re record count for extent •e~,•
takes on values from 8 - 128

dl ••• dn filled-in by CP/M, reserved for
ayat• use

er current record to read or write in
a sequential file operation, normally
aet to zero by user

r8,rl,r2 optional randm record number in the
range 1-65535, with overflow to r2,
rl,rl constitute a 16-bit value with
low byte rl, and high byte rl

Bach file being accessed through CP/M must have a corresponding
PCB which provides the name and allocation information for all
subsequent file operations. When accessing files, it is the
prograamer's responsibility to fill the lower sixteen bytes of the FCB
and initialize the •er• field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero •

. (All Information Contained Herein is Proprietary to Digital Research.)

136

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operat·ions
(aee the OPEN and MAKE functions}. The memory copy of the FCB is
updated as file operations take place and later recorded permanently
.on disk at the termination of the file operation (see the CLOSE
canmand).

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the line following the
transient name, denoted by "f ilel" and "file2" in the prototype
canmand line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+005CH, and can
be used as-is for subsequent file operations. The second FCB occupies
the d0 ••• dn portion of the first FCB, and must be moved to another
area of memory before use. If, for example, the operator types

PROGNAME B :X. ZOT Y. ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+005CH is initialized to drive code 2, file name "X" and file type
"ZOT". The second drive code takes the default value 0, which is
placed at BOOT+006CH, with the file name "Y 1

' placed into location
BOOT+006DH and file type "ZAP" located 8 bytes later at BOOT+0075H.
All remaining fields through .. er" are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at B00T+005CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+005DH and BOOT+006DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
co.nsistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location
BOOT+0080H is initialized to the command line tail typed by the
operator following the program name. The first position contains the
number of characters, with the characters themselves following the
character count. Given the above command line, the area beginning at
BOOT+0080H is initialized as follows:

BOOT+0080H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14
14"" "B" •:· "X" "." "Z" "0" "TN"" "Y" "." "Z" "A" "P"

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is
the responsibility of the programmer to extract the information from

· this buffer before any file operations are performed, unless the
default DMA address is explicitly changed.

The individual functions are described in detail in the pages
which follow.

(All Information Contained Herein is Proprietary to Digital Research.)

137

* * FUNCTION 0: System Reset
*

*
*
*

* Entry Parameters: *
* Register C: 00H *
***************************•***********

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT.

*
* FUNC'l'ION 1: CONSOLE INPUT
*

*
*
*

• Entry Parameters: *
* Register C: 01H *
* *
* Returned Value: *
* Register A: ASCII Character*

The console input function reads the next console character to
register A. Graphic characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console. Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FOOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

* *
* FUNCTION 2: CONSOLE OUTPUT
*

*
*

* Entry Parameters: *
* Register C: 02H *
* Register E: ASCII Character*
* *

The ASCII character from register E is sent to the console
device. Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

138

* *
* FUNCTION 3: READER INPUT *
* *

*
*
*

Entry Parameters:
Register C: IIJ3H

*
*
*

* Returned Value: *
* Register A: ASCII Character*

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"). Control does not return until the character has
been read.

* *
* FUNCTION 4: PUNCH OUTPUT *
* *

*
*
*
*

Entry Parameters:
Register C:
Register E:

*
04H *
ASCII Character*

*

The Punch Output function sends the character from register E to
the logical punch device.

* *
* FUNCTION 5: LIST OUTPUT *
* *

* Entry Parameters: •
* Register C: 05H *
* Register E: ASCII Character*
* *

The List Output function sends the ASCII character in register E
to the logical listing device.

(All Information Contained Herein is Proprietary to Digital Research.)

139

* *
* FUNCTION 6: DIRECT CONSOLE I/0 *
* *

* Entry Parameters:
* Register C:
* Register E:
*
* * Returned Value:

*
06H *
0FFH (input) or*
char (output) *

*
*

* Register A: char or status *
(no value) *

Direct console I/0 is supported under CP/M for thos7 specialized
applications where unadorned console input and output is required.
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions {e.g., control-S and
control-P). Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed to use direct
I/0 under BOOS so that they can be fully supported under future
releases of MP/Mand CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A= 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in Eis not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

* *
* FUNCTION 7: GET I/0 BY'l'E
:*

*
*

*
*
*

Entry Parameters:
Register C: 07H

*
*
*

* Returned Value: *
* Register A: I/0 Byte Value *

The Get I/0 Byte function returns the current value of IOBYTE in
register A. See the •*CP/M Alteration Guide" for IOBYTE definition.

*
*
*

FUNC1rION 8: SET I/0 BYTE
*
*
*

* Entry Parameters: *
* Register C: 08H *
* Register E: I/0 Byte Value *
* *

The Set I/0 Byte function changes the system IOBYTE value to
that given in register E.

* *
* FUNCTION 9: PRINT STRING
*

*
*

* Entry Parameters: *
* Register C: 09H *
* Registers DE: String Address *
* *

The Print String function sends the character string· -stored in
memory at the location given by DE to the console device, until a "$"
is encountered in the string. Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

141

* *
* FUNCTION 10: READ CONSOLE BUFFER *
* *

* Entry Parameters: *
* Register C: 0AH *
* Registers DE: Buffer Address *
* *
* Returned Value: *
* Console Characters in Buffer *

·rhe Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE. Console input is terminated
when either the input buffer overflows. The Read Buffer takes the
form:

DE: +0 +l +2 +3 +4 +5 +6 +7 +8 • • • +n
---lmxlnclcllc2lc3lc4lc5lc6lc71 . . . l??I

where "mx" is the maximum number of characters which the buffer will
hold (1 to 25~, "nc" is the number of characters read (set by FOOS
upon return), followed by the characters read from the console. if nc
< mx, then uninitialized positions follow the last character, denoted
by "??" in the above figure. A number of control functions are
recognized during line editing:

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-M
ctl-R
ctl-U
ctl-x

removes and echoes the last character
reboots when at the beginning of line
causes physical end of line
backspaces one character position
(line feed) terminates input line
{return) terminates input line
retypes the current line after new line
removes currnt line after new line
backspaces to beginning of current line

Note also that certain functions which return the carriaqe to the
leftmost position {e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to
the extreme left margin}. This convention makes operator data input
and line correction more legible. ·

(All Information Contained Herein is Proprietary to Digital Research.)

142

* *
* FUNC•r ION 11: GET CONSOLE STATUS *
* *

*
*
*

Entry Parameters:
Register C: 0BH

*
*
*

* Returned Value: *
* Register A: Console Status *

The Console Status function checks to see if a character has
been typed at the console. If a character is ready, the value 0FFH is
returned in register A. Otherwise a 00H value.is returned.

* *
* FUNCTION 12: RETURN VERSION NUMBER *
* *

* Entry Parameters: *
* Register C: 0CH *
* *
* Returned Value: *
* Registers HL: Version Number *

Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H = 00
designating the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with ~andan access disabled when operating under
early releases of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

143

* * * FUNCTION 13: RESET DISK SYSTEM *
w *

*
*
*

Entry Parameters:
Register C: 0DH

*
*
*

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see furictions 28 and 29), only disk drive A is selected, and the
default OMA address is reset to BOOT+0080H. Thi.s function can be
used, for example, by an application program which requires a disk
change without a system reboot.

***********~***************************
* *
* FUNCTION 14: SELECT DISK
*

*
*

* Entry Parameters: *
* Register C: 0Eff *
* Register E: Selected Disk *
* *

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
• 0 for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive Pin a full sixteen drive system. The drive is placed in an
Mon-lined status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation. If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M enviromnent (see
function 28). FCB 1 s which specify drive code zero (dr = 00H)
autanatically reference the currently selected default drive. Drive
code values between l and 16, however, ignore the selected default
drive and directly reference drives A through P.

(All Information Contained Herein is Proprietary to Digital Research.)

144

*
* FUNCTION 15: OPEN FILE

*
*
* *

* Entry Parameters: *
* Register C: 0FH *
• Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Open File operation is used to activate a file which
currently exists in the disk directory for the currently active user
number. The FOOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE {byte sl is
autanatically zeroed), where an ASCII question mark (3FH) matches any
directory character in any of these positions. Normally, no guestion
marks are included and, further, bytes .,ex" and "s2" of the FCB are
zero.

If a directory element is matched, the relevant directory,
information is copied into bytes d0 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a "directory code" with the value 0 through 3 if the open was
successful, or 0FFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
activated. Note that the current record ("er••) must be zeroed by the
program if the file is to be accessed sequentially from the first
record.

(All Information Contained Herein is Proprietary to Digital Research.)

145

* *
* FUNCTION 16: CLOSE FILE

*
*
*

* Entry Parameters: *
* Register C: 10H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical
to the open function. The directory code returned for a successful
close operation is 0, 1, 2, or 3, while a 0FFH (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred, however, the close o~eration is necessary to
permanently record the new directory information.

(All Information Contained Herein is Proprietary to Digital Research.)

146

* *
* FUNCTION 1 7: SEARCH FOR FIRST *
* *

* Entry Parameters: *
* Register C: llH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 0, 1, 2, or 3 is returned
indicating the file is present. In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A* 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from "fl" through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
"dr" field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr" field is not a question mark,
the "s2" byte is automatically zeroed.

* *
* FUNCTION 18: SEARCH FOR NEXT *
* *

* Entry Parameters:. *
: Register C: 128 :
* Returned Value: *
* Register A: Directory Code *

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

(All Information Contained Herein is Proprietary to Digital Research.)

147

* *
* FUNCTION 19: DELETE FILE *
* *

* Entry Parameters: *
* Register C: 13H *
* Registers DE: FCB Address *
*
* Returned Value:
* Register A:

*
* Directory Code *

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255
files cannot be found, otherwise a
returned.

* * * FUNCTION 20: READ SEQUENTIAL *
* *

* Entry Parameters:
* Register C:
* Registers DE:

14H
FCB Address

*
*
*

* *
* Returned Value: *
* Register A: Directory Code *

if the
value

referenced file or
in the range 0 to 3 is

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current OMA address. the record is read from position "er" of the
extent, and the "er .. field is automatically incremented to the next
record position. If the "er" field overflows then the next logical
extent is automatically opened and the "er" field is reset to zero in
preparation for the next read operation. The value 00H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research.)

148

* *
*

FUNCTION 21: WRITE SEQUENTIAL
*
*
*

* Entry Parameters: *
* Register C: lSH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22). the Write Sequential
function writes the 128 byte data record at the current OMA address to
the file named by the FCB. the record is placed at position •er• of
the file, and the •er" field is automatically incremented to the next
record position. If the "er- field overflows then the next logical
extent is autanatically opened and the •er• field is reset to zero in
preparation for the next write operation. Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A• 88H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

* *
* FUNCTION 22: MAKE FILE
*

*
*

* Entry Parameters: *
* Register C: 16H *
* Registers DE: FCB Address *
* *
* Returned value: *
* Register A: Directory Code *

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero NdrN code, or the default disk if "dr• is zero). The FDOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A• 0,
1, 2, or 3 if the operation was successful and 8FFH (255 decimal) if
no more directory space is available. The make function has the
side-effect of activating the FCB and thus a subsequent open is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research.)

149

*
* FUNCTION 23: RENAME FILE
*

*
*
*

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

17H
FCB Address

*
*
*
*

* Returned Value: *
* Register A: Directory Code *

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr" at position 0 is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between 0 and 3 if the rename was successful, and
0FFH (255 decimal) if the first file name could not be found in the
directory scan.

* *
* FUNCTION 24: RETURN LOGIN VECTOR *
* *

* Entry Parameters: *
* Register C: 18H *
* *
* Returned Value: *
* Registers HL: Login Vector *

The login vector value returned by CP/M is a 16-bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H corresponds - to the sixteenth drive,
labelled P. A "0" bit indicates that the drive is not on-line, while
a "l" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero "dr" field. Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research.)

150

• *
* FUNCTION 25: RETURN CURRENT DISK *
* *
****••·································
* Entry Parameters: *
* Register C: 19H *
* *
* Returned Value: *
* Register A: Current Disk *
•••••••••••••••••••••••••••••••••••••••

Function 25 returns the currently selected default disk number
in register A. The disk numbers range from 0 through 15 corresponding
to drives A through P •

•••••••••••••••••••••••••••••••••••••••
• •
• FUNCTION 26: SET OMA ADDRESS •
• •
•••••••••••••••••••••••••••••••••••••••
• Entry Parameters: •
• Register C: lAH •
• Registers DE: OMA Address •
• •
•••••••••••••••••••••••••••••••••••••••

:oMA" is an acronym for Direct Memory Address, which is often
used 1n connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem. Although many computer systems use non-OMA access (i.e.,
the data is transfered through programmed I/0 operations), the OMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the OMA address is
autanatically set to BOOT+0080H. The Set OMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the OMA address becomes the
value specified by DE until it is changed by a subsequent Set OMA
function, cold start, warm start, or disk system reset.

(All Information Contained Herein is Proprietary to· Digital Research.)

151

* *
* FUNCTION 27: GET ADDR(ALLOC)
*

*
*

* Entry Parameters: *
* Register C: lBH *
* *
* Returned Value: *
* Registers HL: ALLOC Address *

An hallocation vector" is maintained in main memory for each
on-line· disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally
used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide."

* *
* FUNCTION 28: WRITE PROTECT DISK *
* *

*
*
*

Entry Parameters: *
*
*

Register C: lCH

The
protection
the disk,
message

disk write protect function provides temporary write
for the currently selected disk. Any attempt to write to
before the next cold or warm start operation produces the

Bdos Err on d: R/O

(All Information Contained Herein is Proprietary to Digital Research.)
152

* *
* FUNCTION 29: GET READ/ONLY VECTOR *
* *

* Entry Parameters: *
* Register C: lDH *
* *
* Returned Value: *
* Registers HL: R/0 Vector Value*

Function 29 returns a bit vector in register· pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/0 bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

* * * FUNCTION 30: SET FILE ATTRIBUTES *
* *

* Entry Parameters: *
* Register C: lEH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0 and System attributes (tl' and t2') can be set or
reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl' through f4' are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.
Indicators f5' through f8' and t3' are reserved for future system·
expansion.

(All Information Contained Herein is Proprietary to Digital Research.)

153

* *
* FUNCTION 31: GET AODR(DISK PARMS) *
* *

* Entry Parameters: *
* Register C: lFH *
* *
* Returned Value: *
* Registers HL: DPB Address *

The.address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk envirorunent changes, if required. Normally, application
programs will not require this facility.

* *
* FUNCTION 32: SET/GET USER CODE *
* *

* Entry Parameters: *
* Register C: 20H *
* Register E: 0FFH (get) or *
* User Code (set) *
* *
* Returned Value: *
* Register A: Current Code or*
* (no value) *

An application program can change or interrogate the currently
active user number by calling function 32. If register E = 0FFH, then
the value of the current user number is returned in register A, where
the value is in the range 0 to 31. If register Eis not 0FFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)

154

* *
* FUNCTION 33: READ RAND<>t
*

*
*

* Entry Parameters: *
* Register C: 21H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Return Code *
********************••·~···············

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (r0), middle
byte next (rl}, and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a non-zero value indicates overflow past
the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or •word"
value, which contains the record to read. This value ranges from 0 to
65535, providing access to any particular record of the 8 megabyte
file. In order to process a file using random access, the base extent
(extent 0) must first be opened. Although the base extent may or may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and is visible in DIR requests. The
selected record number is then stored into the random record field
(r0,rl), and the BOOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value 00 indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the sequential read operation, the
record number is not advanced. Thus, subsequent random read
operations continue to read the same record.

Upon each randan read operation, the logical extent and current
record values are autanatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randanly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course~ simply advance
the randan record position following each random read or write to
obtain the effect of a sequential I/0 operation.

Error codes returned in register A following a random read are
1 isted below.

(All Information Contained Herein is Proprietary to Digital Research.)

155

81 reading unwritten data
02 (not returned in random mod1!)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a
data block which has not been previously writ~en, or an extent which
has not been created, which are equivalent condttions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

(All Information Contained Herein is Proprietary to Digital Research.)

156

* *
* FUNCTION 34: WRITE RANDCM
*

* *

* Entry Par•etera: *
* Register C: 228 •
* Registers DB: PCB Address *
* *
* Returned Value: •
* Register A: Return Code •

The Write Random operation is initiated similar to the Read
Randan call, except that data is written to the disk from the current
OMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation con~inues. As in the Read Random
operation, the randan record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, seq1:1ential read or write operations can
canmence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in randan mode does not cause an automati_c extent
switch as it does in sequential mode.

The error codes returned
randan read operation with
indicates that a new extent
overflow.

by a rand0111 write are identical to the
the addition of error code es, which
cannot be created due to directory

(All Information Contained Herein is Proprietary to Digital Research.)

157

* *
* FUNCTION 35: COMPUTE FILE SIZE *
* *

* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCB Address *
*
* Returned Value:
* Randan Record Field Set

*
*
*

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r0, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
hvirtual" file size which is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536. Otherwise, bytes r0 and rl constitute a
16-bit value (r0 is the least significant byte, as before) which is
the file size.

Data can be appended to the end of an existing file by
calling function 35 to set the random record position to the
file, then performing a sequence of random writes starting
preset record address.

simply
end of

at the

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in randan mode and Mholes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, onll the last record of an eight megabyte file is written in
randan mode (1.e., record number 65535), then the virtual size is
65536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)

118

. ***************************************
• *
* IUIICTIOII 361 SIT RANDCII RECORD *
* *

* Bntr:y Par•eteras •
* Regiater Cs 248 *
* Regiatera DBI PCB Address *
* * • Returned Values *
* Randca Record Pield Set *

The Set Randan Record function causes the BDOS to automatically
produce the randCID record position from a file which bas been read or
written sequentially to a particular point. The function can be
useful in two ways.

First, it is often ·necessary to initially read and scan a
sequential file to extract the positions of various •key• fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this k,y. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The schane is easily generalized when variable record lengths are
involved since the progr• need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets th• record number, and subsequent random read and
write operations continue from the selected point in the file.

(All Inforaation Contained Herein ia Proprietary to Digital Research.)

159

3. A SAMPLE FILE-TO-FILE COPY PROGRAM.

The program shown below provides a relatively s·imple example of
file operations. The program source file is created as COPY.ASH using
the CP/M ED program and then assembled using AS~ or MAC, resulting in
a ''HEX" file. The LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at 006CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB's are ready for processing since the SFCB at 005CH is
properly ·set-up by the CCP upon entry to the COPY program. That is,
the first name is placed into the default fcb, with the proper fields
zeroed, including the current record field at 007CH. The program
continues by opening the source file, deleting any exising destination
file, and then creating the destination file. If all this is
successful, the program loops at the label COPY until each record has
been read from the source file and placed into the destination file.
Upon completion of the data transfer, the destination file is closed
and the program returns to the CCP command level by jumping to BOOT.

• sample file-to-file copy program ,
1
• at the ccp level, the command , . , . copy a:x.y b:u.v , . ,
• copies the file named x.y from drive ,
1 a to a file named u.v on drive b.
• ,

0000 = boot equ 0000h . system_ reboot ,
0005 = bdos equ 0005h 1 bdos entry point
005c = fcbl equ 00Sch • first file name ,
005c = sfcb equ fcbl • source fcb I

006c • fcb2 equ 006ch . second file name ,
0080 • dbuff equ 0080h . default buffer ,
0100 • tpa equ 0100h . beginning of tpa I .

I

0009 = printf equ 9 • print buffer funct ,
000f • openf equ 15 . open file fun-et I

0010 = closef equ 16 . close file funcl ,
0013 • deletef equ 19 . delete file funct ,
0014 = readf equ 20 • sequential read ,
0015 • writef equ 21 . sequential write ,
0016 • makef equ 22 • make file funct , . ,
0100 org tpa . beg inning of tpa I

0100 3llb02 lxi sp,stack 1 local stack
• I

• move second file name to dfcb I

0103 0el0 mvi c,16 • half an fcb ,

(All Information Contained Herein is Proprietary to Digital Research.)

160

0105 116c00
0108 2lda01
010b la mfcb:
010c 13
010d 77
010e 23
010f 0d
0110 c20b01

0113 af
0114 32fa01

1

lxi
lxi
ldax
inx
mov
inx
dcr
jnz

d,fcb2
h,dfcb
d
d
m,,a
h
C
mfcb

1 source of move
r destination fcb
1 source fcb
; ready next
; dest fcb
1 ready next
1 count 16 ••• 0
1 loop 16 times

name has been moved, zero er
xra a 1 a• 00h
sta dfcbcr 1 current rec• 0

1 source and destination fcb's ready

0117 115c00
011a cd6901
011d 118701
0.120 3c
0121 cc6101

0124 llda01
0127 cd7301

012a llda01
012d cd8201
0130 119601
0133 3c
0134 CC6101

.
I

• I

.
I

. , . ,
;

0137,115c00 copy:
013a cd7801
013d b7
013e c25101

0141 llda01
0144 cd7d01
0147 lla901
014a b7
014b c46101
014e c33701

0151 llda01
0154 cd6e01
0157 2lbb01
015a 3c
015b cc6101

.
I .
I

;
eof ile:

.
I

lxi
call
lxi
inr
CZ

d,sfcb ; source file
open : error if 255
d,nofile1 ready message
a 1 255 becomes 0
finis ; done if no file

source file open, prep destination
lxi d,dfcb ; destination
call delete 1 remove if present

lxi
call
lxi
inr
CZ

d,dfcb
make
d,nodir ;

; destination
; create the file

ready message
; 255 becomes 0 a

finis ; done if no dir space

source file open, aest file open
copy until end of file on source

lxi
call
ora
jnz

not end
lxi
call
lxi
ora
cnz
jmp

d,sfcb 1 source
read ; read next record
a ; end of file?
eofile ; skip write if so

of file, write the record
d,dfcb ; destination
write ; write record
d,space 1 ready message
a ; 00 if write ok
finis : end if so
copy 1 loop until eof

; end
lxi
call
lxi
inr
CZ

of file, close destination
d,dfcb ; destination
close : 255 if error
h,wrprot; ready message
a ; 255 becomes 00
finis ; shouldn't happen

; copy operation complete, end

(All Information Contained Herein is P~oprietary to Digital Research.)

161

015e llcc01 lxi d,normal; ready message . ,
finis: ; write message given by de, reboot

0161 0e09
0163 cd0500
0166 c30000

mvi c,printf
call bdos ; write message
jmp boot ; reboot system

. ,
• I . ,

system interface subroutines
(all return directly from bdos)

.
I

0169 0e0f open: mvi
016b c30500 jmp

;
016e 0el0 close: mvi
0170 c30500 jmp

;
0173 0el3 delete: mvi
0175 c30500 jmp .

I

0178 0el4 read: mvi
017a c30500 jmp

• I

017d 0el5 write: mvi
017£ c30500 j.mp .

I

0182 0el6 make: mvi
0184 c30500 jmp . , .

I

0187 6e6f20fnofile:
0196 6e6f209nodir:
0la9 6f7574fspace:
0lbb 7772695wrprot:
ilcc 636f700normal: . ,

console
db
db
db
db
db

c,openf
bdos

c,closef
bdos

c,deletef
bdos

c,readf
bdos

c,writef
bdos

c,makef
bdos

messages
'no source file$'
'no directory space$'
'out of data space$'
'write protected?$'
'copy complete$'

; data areas
0lda
0lfa =

0lfb

021b

dfcb: ds 33 ; destination fcb
dfcbcr egu dfcb+32; current record . ,
stack:

ds

end

32 ; 16 level stack

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references. This situation
could be detected by scanning the 32 byte default area starting at
location 005CH for ASCII question marks. A check should also be made
to ensure that the file names have, in fact, been included (check
locations 005DH and 006DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file
names are different. A speed improvement could be made by buffering
more data on each read operation. One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

162

the size of memory by fetching FBASE from location 8006H and use the
entire remaining portion of memory for a data buffer. In this case,
the programmer simply resets the DMA address to the next successive
128 byte area before each read. Upon writing to the destination file,
the DMA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to
the destination file.

(All Information Contained Herein is Proprietary to Digital Research.)

163

4. A SAMPLE FILE DUMP UTILITY.

The file dump program shown below is slightly more complex than(-,
the simple copy program given in the previous section. The dump<.
program reads an input file, specified in the CCP command line, and
displays the content of each record in hexadecimal format at the
console. Note that the dump program saves the CCP's stack upon entry,
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing.

0100
0005 =
0001 =
0002 =
0009 =
000b =
000f =
0014 =

005c •
0080 •

000d =
000a •

005C •
005d =
0065 =
0068 •
006b •
007c =
007d •

0100 210000
1183 39

8104 221582

0107 315702

010a cdcl01
010d feff
010£ c2lb01

0112 llf301
0115 cd9c01
0118 c35101

; DUMP program reads input file and displays hex data .
I

bdos
cons
typef
pr1ntf
brkf
open£
read£
• I

fcb
buff
• I . ,
er
lf
• ,
;
fcbdn
fcbfn
fcbft
fcbrl
fcbrc
fcbcr
fcbln

• ,

• ,
;

. ,

org
equ
equ
equ
equ
equ
equ
equ

equ
egu

100h
0005h
1
2
9
11
15
20

Sch
80h

;dos entry point
; read console
;type function
;buffer print entry
;break key function (true if char
; file open
; read function

;file control block address
;input disk buffer address

non graphic characters
egu 0dh ;carriage return
equ 0ah ;line feed

file control block definitions
egu fcb+0 ;disk name
equ fcb+l ;file name
equ fcb+9 ;disk file type (3 characters)
equ fcb+l2 ;file's current reel number
egu fcb+l5 ;file's record count (0 to 128)
equ fcb+32 ;current (next) record number (0
equ fcb+33 ;fcb length

set up stack
lxi h,0
dad sp
entry stack pointer in hl from the ccp
shld oldsp
set sp to local stack area (restored at finis}
lxi sp,stktop
read and print successive buffers
call setup ;set up input file
cpi 255 ;255 if file not present
jnz openok ;skip if open is ok

file
lxi
call
jmp

not there, give error message and
d,opnmsg
err
finis ;to return

return

(All Information Contained Herein is Proprietary to Digital Research.)

4.C..,I

openok: ,open operation ok, set buffer index to end
lllb 3e80 mvi a,88h
811d 321302 sta ibp ,set buffer pointer to 80h

, hl contains next address to print
· 8120 210000 lxi h,0 ,start with 0000 ,

gloop:
8123 es
0124 cda201
0127 el
0128 da5101
012b 47

• I

• I

812c 7d
012d e60f
012f c24401

• I

0132 cd7201
• I

• I

0135 cd5901
• I

0138 0f
0139 da5101

• I

013c 7c
013d cd8f01
0140 7d
0141 cd8£01

nonum:
0144 23
0145 3e20
0147 cd6501
014a 78
014b cd8f01
014e c32301

• I

finis:
• I

• ,
0151 cd7201
0154 2al502
0157 f9

• ,
0158 cg

• I

• I

• I . ,
break:

0159 e5d5c5
015c 0e0b
015e cd0500
0161 cldlel

push h
call gnb

1save line position

pop h 1recall line position
jc finis
mov b,a

1carry set by gnb if end file

print hex values
check for line fold
mov a,l
ani 0fh 1check low 4 bits
jnz nonum
print line number
call crlf

check for break key
call break
accum lsb • 1 if character ready
rrc 1 into carry
jc finis ;don't print any more

mov a,h
call phex
mov a,l
call phex

inx h ;to next line number
mvi a,• •
call pchar
mov a,b
call phex
jmp gloop

end of dump, return to ccp
(note that a jmp to 0000h reboots)
call crlf
lhld oldsp
sphl
stack pointer contains ccp's stack location
ret 1to the ccp

subroutines

1check break key (actually any key will do)
push hi push d! push b1 environment saved
mvi c,brkf
call bdos
pop bl pop dl pop h1 environment restored

(All Information Contained Herein is Proprietary to Digital Research.)

165

0164 c9 ret
• ,
pchar: 1print a character

0165 eSdScS push hi push di push b1 saved
0168 0e02 mvi c,typef
016a Sf mov e,a
016b cd0500 call bdos
016e cldlel pop bl pop d! pop h; restored
0171 c9 ret . ,

crlf:
0172 3e0d mvi a,cr
0174 cd6501 call pchar
0177 3e0a mvi a,lf
0179 cd6501 call pchar
017c c9 ret . , . ,

pnib: ;print nibble in reg a
017d e60f ani 0fh ;low 4 bits
017f fe0a cpi 10
0181 d28901 jnc pl0 . less than or equal to 9 ,
0184 c630 adi • 0 •
0186 c38b01 jmp prn

• I

; greater or equal to 10
0189 c637 pl0: adi 'a' - 10
018b cd6501 prn: call pchar
018e c9 ret .

I

phex: ;print hex char in reg a
018£ fS push psw
0190 0f rrc
0191 0f rrc
0192 0f rrc
0193 0f rrc
0194 cd7d01 call pnib ;print nibble
0197 fl pop psw
0198 cd7d01 call pnib
019b c9 ret .

I

err: ;print error message . d,e addresses message ending with"$" I

019c 0e09 mvi c,printf ;print buffer function
019e cd0500 call bdos
0lal c9 ret .

I . ,
gnb: ;get next byte

0la2 3al302 lda ibp
0la5 fe80 cpi 80h
0la7 c2b301 jnz g0 . read another buffer I

• I

(All Information Contained Herein is Proprietary to Digital Research.)

166

,
0laa cdce01
0lad b7
0lae cab301 ,
0lbl 37
0lb2 c9

• ,
g0:

0lb3 Sf
0lb4 1600
0lb6 3c
0lb7 321302

• ,
• ,

0lba 218000
0lbd 19

' 0lbe 7e
f

0lbf b7
0lc0 c9

f
setup:
•

0lci af
,

0lc2 327c00
• ,

0lc5 115c00
0lc8 0e0f
0lca cd0500

• ,
0lcd c9

J
diskr:

Blee e5d5c5
0ldl 115c0B
01d4 0el4
0ld6 cd0500
0ld9 cldlel
0ldc c9

• ,
• ,

01dd 46494c0signon:
0lf3 0d0a4e0opnmsg:

• ,
0213 ibp:
0215 oldsp:

• ,
• . ,

0217
stktop:
• ,

0257

call diskr
ora a ,zero value if read ok
jz g0 ,for another byte
end of data, return with carry set for eof
ate
ret

,read the byte at buff+reg a
mov e,a 71s byte of buffer index
mvi d,0 ;double precision index to de
inr a ;index•index+l
sta ibp ;back to memory
pointer is incremented
save the current file address
lxi h,buff
dad d
absolute character address is in hl
mov a,m .
byte is in the accumulator
ora a ;reset carry bit
ret

·,set up file
open the file for input
xra a
sta fcbcr

d,fcb
c,openf·
bdos

, zero to accum
,clear current record

lxi
mvi
call
255 in
ret

accum if open error

;read disk file record
push hl push dl push b
lxi d,fcb
mvi c., r.eadf
call bdos
pop bl pop dl pop h
ret

fixed message area
db 'file dump version 2.0$' _
db cr,lf,'no input file present on disk$'

variable area
ds· 2 ;input buffer pointer
ds 2 ,entry sp value from ccp

stack area
ds 64 ;reserve 32 level stack

end

(All Information Contained Herein is Proprietary to Digital Research.)

167

5. A SAMPLE RANDOi ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of randan access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM.COM, the CCP level
command:

RANDOi X .DAT

starts the test program. The program looks for a file by
x.DAT (in this particular case) and, if found, proceeds to
console for input. If not found, the file is created
prompt is given. Each prompt takes the form

next command?

the name
prompt the

before the

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nR Q

where n is an integer value in the range 0 to 65535, and w, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is issued,
the RAND01 program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RAND01 then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
o~command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the
only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. The
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow,
which contain the principal input line processor, called "readc."
This particular program shows the elements of random access
processing, and can be used as the basis for further program
development.

(All Information Contained Herein is Proprietary to Digital Research.)

0100

0000 •
0005 •

0001 =
0002 •
0009 •
000a =
000c •
000f =
0010 •
0016 •
0021 =
0022 •

005c =
007d =
007f =
0080 =

000d =
000a •

0100 3lbc0

0103 0e0c
0105 cd050
0108 fe20
010a d2160

010d lllb0
0110 cdda0
0113 c3000

0116 0e0f
0118 115c0
011b cd050
0lle 3c
0 llf c23 70

1***
1* *
1* sample randan access program for cp/m 2.0 *
1* *
:***

org 100h :base of tpa
1
reboot equ 0000h ,system reboot
bdos egu 0005h 1bdos entry point
• ,
coninp egu 1 :console input function
conout egu 2 :console output function
pstring equ 9 :print string until t $ I

rstring equ 10 :read console buffer
version egu 12 :return version number
openf equ 15 :file open function
close£ egu 16 :close function
makef equ 22 :make file function
readr equ 33 : read random
writer egu 34 :write random
• ,
fcb equ 005ch 7default file control block
ranrec equ fcb+33 ,random record position
ranovf egu fcb+35 : high order (overflow) byte
buff egu 0080h : buffer address . ,
er equ 0dh : carriage return
lf egu 0ah : line feed
:
·*** ,
·* * , .
7* load SP, set-up file for random access *
•* * ,
•*** ,

lxi sp,stack . ,
; version 2.0?

. ,

. ,
versok:

. ,
1

mvi c,version
call bdos
cpi 20h 7version 2.0 or better?
jnc versok
bad version, message and go back
lxi d,badver
call print
jmp reboot

correct
mvi
lxi
call
inr
jnz

version
c,openf
d,fcb
bdos
a
ready

for random access
:open default fcb

:err 255 becomes zero

cannot open file, so create it

(All Information Contained Herein is Proprietary to Digital Research.)

169

0122 0el6
0124 115c0
0127 cd050
012a Jc
012b c23 70

012e 113a0
0131 cdda0
0134 C3000

0137 cde50
013a 227d0
013d 217f0
0140 3600
0142 feSl
0144 c2560

0147 0el0
0149 115c0
014c cd050
014£ 3c
0150 cab90
0153 c3000

0156 fe57
0158 c2890

015b 114d0
015e cdda0
0161 0e7f
0163 21800

0166 cs
0167 es
0168 cdc20
016b el

mvi c,makef
lxi d,fcb
call bdos
inr a :err 255 becomes zero
jnz ready

• I

• cannot create file, directory full ,
lxi d,nospace
call print
jmp reboot :back to ccp .

I

·*** I

·* * I

·* I

·* I

loop back to "ready'' after each command *
*

·*** I .
I

ready: .
I .
I

.
I

:

.
I

file is ready for processing

call
shld
lxi
mvi
cpi
jnz

quit
mvi
lxi
call
inr
jz
jmp

readcom :read next command
ranrec :store input recordi
h, ranovf
m,0 :clear high byte if set
'Q' ;quit?
notq

processing, close file
c,closef
d,fcb
bdos
a :err 255 becomes 0
error ;error message, retry
reboot ;back to ccp

·*** I

·* * ,
;* end of quit command, process write *
·* * ,
•*** ,
notq: . not the quit command, random write? ,

cpi I w•
jnz notw . , . this is a random write, fill buffer until er I

lxi d ,da tmsg
call. print ;data prompt
mvi c,127 ;up to 127 characters
lxi h ,buff ;destination

r loop: ; read next character to buff
push b ; save counter
push h ;next destination
call getchr ;character to a
pop h ; restore counter

(All Information Contained Herein is Proprietary to Digital Research.)

170

016c cl
016d fe0d
B16f ca780

0172 77
0173 23
0174 0d
0175 c2660

0178 3600

017a 0e22
017c 115c0
017f cd050
0182 b7
0183 c2b90
0186 c3370

0189 fe52
018b c2b90

018e 0e21
0190 115c0
0193 cd050
0196 b7
0197 c2b90

019a cdcf0
019d 0e80
019f 21800

0la2 7e
0la3 23
0la4 e67f
0la6 ca370
0le9 cs
0laa es
0lab fe20
0lad d4c80
0lb0 el
0lbl cl
0lb2 0d
0lb3 c2a20
0lb6 c3370

1

er loop:
1

pop b
cpi er
jz er loop
not end, store
mov m,a
inx h
dcr c
jnz rloop

,restore next to fill
,end of line?

character

1next to fill
1 counter goes down
,end of buffer?

end of read loop, store 00
mvi m,0

write
mvi
lxi
call
ora
jnz
jmp

the record to selected record number
c,writer
d,fcb
bdos
a 1 error code zero?
error ,message if not
ready 1for another record

1
1***
·* * I

1* end of write command, process read *
1* *
1***
notw:
• not a write command, read record? I

cpi IR I
jnz error 1skip if not

• I

• read randan record I

mvi c,readr
lxi d,fcb
call bdos
ora a ,return code 00?
jnz error .

I . read was successful, write to console ,
call crlf 1new line
mvi c,128 1max 128 characters
lxi h,buff 1next to get

wloop:
mov a,m 1next character
inx h ,next to get
ani 7fh ,mask parity
jz ready 1for another com~and if 00
push b :save counter
push· .h :save next to get
cpi I • 1graphic?
enc putchr :skip output if not
pop h
pop b
dcr C 1 count•count-1
jnz wloop
jmp ready

(All Information Contained Herein is Proprietary to Digital Research.)

171

0lb9 11590
0 lbc cdda0
0lbf c3370

0lc2 0e01
0lc4 cd050
0 lc7 c9

0lc8 0e02
0lca Sf
0lcb cd050
0lce c9

0lcf 3e0d
0ldl cdc80
0 ld4 3e0a
0ld6 cdc80
0ld9 c9

-0..lda dS
0ldb cdcf0
0lde dl
0ldf 0e09
0lel cd050
0le4 c9

0le5 116b0
0 le8 cdda0
0leb 0e0a
0led ll 7a0
0lf0 cd050

7
1***
·* * ,
1* end of read command, all errors end-up here
•* , *

*
;***
• I

error:
lxi
call
jmp

d,errmsg
print
ready

1
;***
•* * I

;* utility subroutines for console i/o *
·* * I

·*** I

getchr:

• I

putchr:

;
crlf:

. ,
print:

• ,

; read
mvi
call
ret

next console character to a
c,coninp
bdos

;write character from a to console
mvi c,conout
mov e,a ;character to send
call bdos ;send character
ret

;send carriage return line feed
mvi
call
mvi
call
ret

;print
push
call
pop
mvi
call
ret

a,cr ; carriage return
putchr
a,lf ; 1 ine feed
putchr

the buffer addressed by de until$
d
crlf
d ;new line
c,pstring
bdos ;print the string

read com:

• ,

1read
lxi
call

the next command line to the conbuf
d,prompt

mvi
lxi
call
command

print ;command?
c,rstring
d,conbuf
bdos ;read command line
line is present, scan it

(All Information Contained Herein is Proprietary to Digital Research.)

0 lf 3 21000
01£6 117c0
01£9 la
0lfa 13

. 0lfb· b7
0lfc c8

0lfd d630
01££ fe0a
0201 d2130

0204 29
0205 4d
0 206 4 4
0207 29
0208 29
0209 09
020a 85
020b 6£
020c d2f90
020f 24
0210 C3f90

0213 C630
0215 fe61
0 217 d8

0218 e65f
021a c9

readc:

endrd:

lxi
lxi
ldax
inx
ora
rz

h, 0 J start with 0000
d,conlin;command line
d :next command character
d :to next command position
a 1cannot be e~d of command

zero, numeric? not
sui
cpi
jnc
add-in
dad
mov
mov
dad
dad
dad
add
mov
jnc
inr
jmp

I 0 I
10
endrd

:carry if numeric

next digit
h ; *2
c,l
b,h
h
h
b
1
l,a
readc
h
readc

;be= value* 2
;*4
;*8
;*2 + *8 = *10
1+digi t

1for ·another char
;overflow
;for another char

of read, restore value in a end
adi
cpi
re
lower
ani
ret

'0' ; command
'a' ;translate case?

case, mask lower case bits
101$llllb

;
;***
·* * I

;* string data area for console messages *
·* * I

·*** I

badver:
021b 536£79 db 'sorry, you need cp/m version 2$'

nospace:
023a 4e6f29 db

datmsg:
024d 547970 db

er rmsg:
0259 457272 db

prompt:
026b 4e6570 db

1

'no directory space$'

• type data: $'

'error, try again.$'

'next command?$'

(All Information Contained Herein is Proprietary to Digital Research.)

173

027a 21
027b
027c
0021 =

029c

02bC

1***
. * * ,
1* fixed and variable data area
•* , *

*
•*** ,
conbuf: db conlen 1length of console buffer
consiz: ds 1 1resulting size after read
conlin: ds 32 1 length 32 buffer
conlen equ $-consiz . ,

ds 32 116 level stack
stack:

end

Again, major improvements could be made to this particular
program to enhance its operation. In fact, with some work, this
program could evolve into a simple data base management system. One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the 11 LASTNAME" field from each record, starting at position 10 and
ending at character 20. GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its 16-bit record number
location within the file. The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical
list of LASTNAME fields with their corresponding record numbers.
(This list is called an "inverted index" in information retrieval
parlance.)

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command line might
appear as:

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alp~anumeric
string which is a particular key to find in the NAMES.DAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular entry
quite rapidly by performing a "binary search," similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search.
You'll quickly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number. Fetch and display
this record at the console, just as we have done in the program shown
above.

(All Information Contained Herein is Proprietary to Digital Research.)
174

At this point you're just getting started. With a little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory,
randomly access your key files from the disk as well. One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manuall

(All Information Contained Herein is Proprietary to Digital Research.)

175

6. SYSTEM FUNCTION SUMMARY.

FUNC fUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS

---- --------------------- ---------------- --------------
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

System Reset
Console Input
Console Output
Reader Input
Punch Output
List Output
Direct Console I/0
Get I/0 Byte
Set I/0 Byte
Pr int String
Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk
Open File
Close File
Search for First
Search for Next
Delete File
Read Sequential
Write Sequential
Make File
Rename File
Return Login Vector
Return Current Disk
Set OMA Address
Get Addr (Alloc)
Write Protect Disk
Get R/0 Vector
Set File Attributes
Get Addr (disk parms)
Set/Get User Code
Read Randan
Write Rand an
Compute File Size
Set Randan Record

none
none
E = char
none
E = char
E = char
see def
none
E = IOBYTE
DE = • Buffer
DE = • Buffer
none
none
none
E = Disk Number
DE= .FCB
DE= .FCB
DE= .FCB
none
DE= .FCB
DE= .FCB
DE= .FCB
DE= .FCB
DE= .FCB
none
none
DE= .OMA
none
none
none
DE= .FCB
none
see def
DE= .FCB
DE= .FCB
DE= .FCB
DE= .FCB

•

* Note that A = L, and B = B upon return

none
A= char
none
A= char
none
none
see def
A = IOBYTE
none
none
see def
A= 00/FF
HL= version*
see def
see def
A= Dir Code
A= Dir Code
A= Dir Code
A= Dir Code
A= Dir Code
A= Err Code
A= Err Code
A= Dir Code
A = Dir Code
HL= Login Vect*
A= Cur Disk#
none
HL= .Alloc
see def
HL= R/0 vect*
see def
HL= .DPB
see def
A= Err Code
A= Err Code
r0, rl, r2
r0, rl, r2

(All Information Contained Herein is Proprietary to Digital Research.)

176

CP/M 2.2 ALTERATION GUIDE

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc •• to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

CP/M 2.2 ALTERATION GUIDE

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or transl.ated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc •• to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

Table Of Contents

CP/M Alteration Guide

1. lntroduction ••••••••••••••••••••••••••••• 177
2. First level System Regenerative •••••••••• 178
3. Second level System Generation ••••••••••• 182
4. Saq,le Getsys And Putsys Programs •••••••• 186
s. Diskette Organization •••••••••••••••••••• 188
6. The BIOS Entry Points •••••••••••••••••••• 190
7. A Saq,le BIOS.•••••••••••••••••••••••••••197
8. A Saq,le Cold Start Loader ••••••••••••••• 198
9. Reserved locations In Page Zero •••••••••• 199
10. Disk Parameter Tables •••••••••••••••••••• 201
11. The DISKDEF Macro llbrarY••••••••••••••••206
12. Sector Blocking And Deblocking ••••••••••• 210

Appendix A••••••••••••••••••••••••••••••212
Appendix B••••••••••••••••••••••••••••••215
Appendix C.•••••••••••••••••••••••••••••226
Appendix D •••••••••••••••••••••••••••••• 232
Appendix E••••••••••••••••••••••••••••••235
Appendix F••••••••••••••••••••••••••••••237
Appendix G••••••••••••••••••••••••••••••242

1. INTROOUC·rION

The standard CP/M system assumes operation on an Intel MDS-dfl0
micro9omputer development system, but is designed so that the user can
alter a specifi~ set of subroutines which define the hardware
operating environment. In this way, the user can ?roduce a diskette
which operates with any IBM-3741 format comoatible drive controller
and other peripheral devices.

Altnough standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow ada~tation to a wide variety of
disk subsystems from single· drive minidisks through high-capacity
.. hard disk" systems. In order to simplify the following adaptation
process, we assume that CP/M 2.0 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M is available, the
customizing process is eased considerably. In this latter case, you
may wisn to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems.

In order to achieve device independence, CP/M is separated into
tnree distinct modules:

BIOS - basic I/0 system which is environment dependent
BOOS - basic disk operating system which is not dependent

upon the hardware configuration
CCP - the console command processor which uses the BOOS

Of these modules, only the BIOS is dependent upon the particular
hardware. That is, the user can "patch" the distribution version of
CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware system.
The purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first
time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal
version of the BIOS is given in Appendix C which can serve as the
basis for a modified BIOS. In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. In order to paten the new BIOS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
described in Section 3, and listed in Appendix D. In order to make
the CP/M system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

177

2. FIRS·r LEVEL SYS·rEM REGEN.ERA·rroN

·rhe procedure to follow to patch the CP/M system is given below in
several steps. Address references in each step are shown with a
following "tt·• which denotes the hexadecimal radix, and are given for a
20K CP/M system. For larger C.l?/M systems, add a "bias" to each
address whicn is shown with a "+b" following it, wnere bis equal to
tne memory size - 20K. Values for bin various standard memory sizes
are

24K: b = 24K - 20K = 4K = 1000H
32K: 0 = 32K - 20K = 12K = 3000H
4tlK: b = 4~K - 201< = 20K = 5000H
48£<: b = 48K - 20K = 28K = 7000H
56K: b = 56K - 20K = 36K = 9000H
62K: b = 62K 20K = 42K = A800H
64K: b = 64K - 20K = 44K = i3000H

Note: The standard distribution version of CP/M is set for
operation within a 20K memory system. Therefore, you must first bring
up the 20K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review Section 4 and write a GETSYS program which reads the
first two tracks of a diskette into memory. The data from the diskette
must begin at location 338~H. Code GETSYS so that it starts at
location 100ri (oase of the TPA), as shown in the first 9art of
Appendix d.

(2) ·rest tne GETSYS program by reading a blanK diskette into
memory, and check to see that the data has been read properly, and
that the diskette has not been altered in any way by the GETSYS
program.

(3) Run the GETSYS program using an initialized CP/M diskette to
see if GETSYS loads CP/M starting at 3380H (the operating system
actually starts 128 bytes later at 34008).

(4) Review Section 4 and write the
memory starting at 3380H back onto
diskette. The PUTSYS program should be
the second part of Appendix o.

.Pu·rsys program which writes
the first two tracks of the

located at 200H, as shown in

(5) Test the .l?UTSYS program using a blank uninitialized_ diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. use
the program given in Appendix Casa model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Researcn.)

178

(7) Test CBIOS completely to ensure that it pro~erly 9erforms
console character I/0 and disk reads and writes. Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes. Failure to make these checks
may cause destruction of the initialized CP/~ system after it is
patched.

(d) Referring to Figure 1 in Section 5, note that the BIOS is
placed between locations 4A00H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). This replacement is done in the memory of
the machine, and will be placed on the diskette in the next step.

(9) use PUTSYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

{10) Use GETSYS to bring the copied memory image from· the test
diskette back into memory at"3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the load).
Upon successful load, branch to the cola start coae at location 4A00H.
~he cold start routine will initialize page zero, then jum9 to the CCP
at location 3400H which will call the BOOS, which will call the CBIOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/M will type "A>",_ the system prompt.

When you make it this far, you are almost on tne air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (10), CP/M has promyted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM

(recall that all commands must be followed by a carriage return).

CP/M should res1?()nd with another prompt (after several disk accesses):

A>

If it does not, debug your disk write functions and retry.

(12) Then test the directory command by typing

DIR

CP/M should respond with

A: X COM

(13) ·rest tne erase command by typing

ERA X.COM

(All Information Contained Herein is Proprietary to Digital Research.)

179

CP/M should respond with the A promot. When you make it this far, you
should have an operational system which will only require a bootstrap
loader to .,f uirntion._ completely.

(14) Write a bootstrap loader which is similar to GETSYS, and
place it on track 0, sector 1 using PUTSYS (again using the test
diskette, not the distribution diskette). See Sections 5 and d for
more information on the bootstrap opet:ation.

(15) Retest the new test diskette with the bootstrap loader
installed by executing ste9s (11), (12), and (13). U9on completion ot
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start" which reboots the system,
and types the A prompt.

(16) At this point, you probably have a good version of your
customized CP/M system on your test diskette. Use GETSYS to load CP/M
from your test diskette. Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not· make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing

DIR

ce/M should resr;>ond with a list of files which are provided on the
initialized diskette. One such file should be the memory image for
the debugger, called DDT.COM.

~OTE: from now on, it is important that you always reboot the CP/M
syst~~ (ctl-C is sufficient) when the diskette is removed and replaced
by anotner diskette, unless the new diskette is to be read only.

(18) Load and test the debugger by typing

DOT

(see the document "CP/M Dynamic Debugging Tool (DDT)" for operating
proceaures. You should take the time to become familiar with DOT, it
will be your oest triend in later steps.

(1~) Before making further CBIOS modifications, practice using
the editor· (see the ED user's guide), and assembler (see the ASM
user's guide). Then recode and test the GETStS, PUTSYS, and CBIOS
programs. using ED, ASl1, ~nd oo·r. Code and test a coey program which
does a sector-to-sector copy from one diskette to another to obtain
back-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement: it specifies your legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 197~
Digital Research

(All Information contained Herein is Proprietary to Digital Research.)

180

on each copy which is made with your COPY program.

(20) Modify your CBIOS to include the extra functions for
punches, readers, signon messages, and so-forth, and add the
facilities for a aaditional disk drives, if desired. You can make
these changes with the GETSYS and PUTSYS programs which you have
developed, or you can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have developed belongs to
you, the modified version of CP/M which you have created can be copied
for your use only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use.

It should be noted that your system remains file-compatible with all
other CP/M systems, (assuming media com~atiblity, of course) which
allows transfer of non-~ro~rietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)
181

3. SECOND LEVEL SYSTEM GENERATION

~ow that you have the CP/M system running, you will want to
configure CP/M for your memory size. In general, you will first get a
memory image of C.P/M with the "t40V'CPM" program (system relocator) and
olace this memory image into a named disk file. The disk file can then
be loaded, examined, patched, and replaced using the denugger, and
system generation program. For further details on the operation of
these programs, see the "Guide to C.P/M Features and Facilities"
:nanual.

Your CSIOS and BOOT can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and aOOT.BEX. which contain the
machine code for CBIOS and SOOT in Intel hex format.

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCJ?M xx*

where ~xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
·rhe response will oe:

CONSTRUCTING xxK CP/M VERS 2.0
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.COM"

At this ooint, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location 090ijff through
227Fti. (i.e., The BOOT is at 0900H, the CCP is at 9808, the BOOS
starts at 11808, and the BIOS is at 1F80H.) Note that the memory
image nas the standard MDS-800 BIOS and BOOT on it. It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOO~ into it:

SAVE 34 CPMxx.COM

·rhe memory image created by the "MOVC.PM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image canoe subsequently loaded under DDT and examined or
changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM

oo·r should respond with

NEXT PC
2300 0100

Load DDT, then read the CPM
image

(The DOT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

182

portions of the memory image between 900H and 227FB. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the'actual
address. Track 00, sector 01 is loaded to location 900H (you should
find the cold start loader at 9008 to 97FH), track 00, sector 02 is
loaded into 980H (this is the base of the CCP), and so-forth through
the entire CP/M system load. In a 20K system, for example, the CCP
resides at the CP/M address 3400H, but is placed into memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 9808, or n = 9808 - 34008

Assuming two's complement arithmetic, n = D5808, which can be checked
by

34008 + D580H = 10980H = 0980H (ignoring high-order
overflow).

Note that for larger systems, n satisfies

(3400H+b) + n = 980H, or
n = 980H - (3400H + b), or
n = D5808 - b.

The value of n for common CP/M systems is given below

memory size bias b negative offset n

20K 0000H D5808 - 00008 = 0580H
24K 10008 0580H 1000H = C580H
32K 30008 05808 3000H = A580H
40K 50008 058'18 - 50008 = 8580H
48K 70008 D580H - 7000H = 6580H
56K 9000H D5808 - 9000B = 4580H
62K At3008 05808 - A800H = 2D80H
64K B000H D580B - 8000H = 2580B

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system. First type

8x,n Hexadecimal sum and difference

and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found. The input

83400,0580

for example, will produce 980H as the sum, which is where the CCP is
located in tne memory image under DDT.

use the L command to disassemble portions the BIOS located at
(4A00H+o)-n which, when you use the H command, produces an actual
address of 1F80H. ~he disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Resear<HI.)

183

LlF80

It is now necessary to oatch in your CBOOT and CBIOS routines. The
BOOT resides at location 0900H in the memory image. If the actual
load address is un~, then to calculate the bias (m) use the command:

H900,n Subtract load address from
target address.

The second number ty9ed in response to the command is the desired bias
{m). For example, if your BOOT executes at 008~H, tne command:

H90tJ,80

will reply

098~ 0880 Sum and difference in hex.

~herefore, the bias "m~ would be 0880H. To read-in the BOOT, give the
command:

ICBOO'I'. f:l EX Input file caoo·r.HEX

Then:

Rm Read CBOOT with a bias of
m {=90tJH-n)

You may now examine your CBOOT with:

L900

We are now ready to replace the CBIOS. Examine
where the original version of the CBIOS resides.

the area
Then type

at 1F80H

ICBIOS.HEX Ready the "hex" file for loading

assume that your CBIOS is oeing integrated into a 20K CP/M system, and
thus is origined at location 4A00H. In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file. ·rhis is accomplished by
typing

RD580 Read the file with bias D580H

Upon completion of the read, re-examine the area where the
been loaded (use an "tlF80" command), to ensure that is
properly. When you are satisfied that the change has
return from DDT using a ·control-C or uG0" command.

CBIOS has
was loaded

been made,

Now use SYSGEN to replace the patched memory image back onto a
diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(All Information Contained Herein is ~ro~rietary to Digital Research.)

18-4

SYSGEN Start the SYSGEN program
SYSGEN VERSION 2.0 Sign-on message from SYSGEN
SOURCE DRIVE NAME (OR RETURN TO SKIP)

Respond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
Respond with HBH to write the
new system to the diskette in
drive B.

DESTINATION ON B, THEN TYPE RETURN

FUNCTIO~ COMPLETE

Place a scratch diskette in
drive B, then type return.

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

~lace the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

185

4. SAMPLE GE·rSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS programs referenced in Section 2. The READSEC and WRITESEC
subroutines must be inserted by the user to read and write the
specific sectors.

READ TRACKS 0 ANO l TO MEMORY AT 3380H . GETS1S PROGRAM -,
USE . REGISTER , . ,

; . ,
; . , .
I . ,
START:

RD·rRK:

RDSEC:

.
I

A
B
C
DE
HL
SP

LXI
LXI
MVI

MVI

CALL
LXI
DAD
INR
MOV
CPI
JC

SP,3380H
H, 3380H
B, 0

C,l

READS EC
D,128
D
C
A,C
27
RDSEC

{SCRATCH REGISTER)
·rRACK COUNT (0 , 1)
SECTOR COUNT (1,2, ••• ,26)
(SCRATCH REGISTER PAIR}
LOAD ADDRESS
SET TO STACK ADDRESS

;SET STACK POIN·rER TO SCRATCH AREA
;SET BASE LOAD ADDRESS
; s·rART WITH TRACK 0
; READ NEXT TRACK (INITIALLY 0)
;READ STARTING WITH SECTOR l
;READ NEXT SECTOR
;USER-SUPPLIED SUBROUTINE
;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
;HL = HL + 128
;SECTOR= SECTOR+ 1
;CHECK FOR END OF TRACK

;CARRY GENERA·rED IF SECTOR < 27

; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CPI 2
JC RD·rRK ; CARRY GENERA·reo IF TRACK < 2

;
; ARRIVE HERE AT END OF LOAD, HALT FOR NOW

HLT . ,
; USER-SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:
; ENTER WITH TRACK NUMBER IN REGISTER B,
; SECTOR NUMBER IN REGISTER C, AND
; ADDRESS TO FILL IN HL

PUSH
PUSH

B
H

;SAVE BAND C REGISTERS
;SAVE HL REGIS·rERS

.
perform 'disk read at this point, branch to

label START if an error occurs
. ~
POP
POP
RET

H
B

ENO START

; RECOVER HL
;RECOVER B ANO C REGISTERS
;BACK TO MAIN PROGRAM

(All Information Contained Herein is Proprietary to Digital Research.)

Note that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of 190H. The hexadecimal
operation codes which are listed on the left may be useful if the
program has to be entered through your machine's front panel switches.

The PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix o. The register pair HL become the dump address (next
address to write), and operations upon these registers do not change
within the program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opposite function: data from address HL
is written to the track given by register B and sector given by
register c. It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(All Information Contained Herein is Proprietary to Digital Research.)

187

5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
CP/M is- given here for reference ?urooses. The first sector (see
table on the following page) contains an optional software boot
section. Disk controllers are often set up to bring track 0, sector 1
into memory at a specific location (often location 0000H). The
program in this sector, called BOOT, has the responsibility of
bringing the remaining sectors into memory starting at location
3400H+b. If your controller does not have a built-in sector load, you
can ignore the program in track 0, sector 1, and begin the load from
track 0 sector 2 to location 3400H+b.

As an example, the Intel tIDS-800 hardware cold start loader brings
track 0, sector l into absolute address 3000H. Upon loading this
sector, control transfers to location 3000H, where the bootstrap
operation commences by loading the remainder of tracks 0, and all of
track 1 into memory, starting at 340ijH+b. The user should note that
this oootstrap loader is of little use in a non-MOS environment,
althougn it is useful to examine it since some of the boot actions
will have to be duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

1RR

n,r::mu 1, y nuu1. '=DD

------~-----------------------------~-------------------------
'" 81 (boot address) Cold Start Loader

-----~-----------------------------~--------------------------••
80

12
83
04
05
06
07
08
09
18
11
12
13
14
15
16
17

00 ..
01 ..
02 ..
03 ..
04 ..
as ..
06 ..
07 ..

3400H+b·
3480H+b
3500H+b
35th1H+o
3600H+i:>
3680H+b
3700H+D
3780H+b
3800H+b
38808+b
3908B+b
3980H+b
3A00H+b
3A80B+b
3800H+b
3B88H+b

CCP
••

..

..
CCP

--..
•
•

81 ..
•
•
•
•
81

18
19
20
21
22
23
24
25
26
81
02
83
04
es
06
17
88
19
11
11
12
13
14
15
16
17
18
19

08 ..
09 ..
10 ..
11 ..
12 ..
13 ..
14 ..
15 ..
16 ..
17 ..
18 ..
19 ..
28 ..
21 ..

3C00H+b
3C80H+b
3000B+b
3080H+b
3E00H+b
3E80H+b
3F00H+b
3F80H+b
4000H+b
4080H+b
4100B+b
4180H+b
4280H+b
4288H+b
4300B+b
4380H+b
4400B+b
4488H+b
4500B+b
4588H+b
4680H+b
4680H+b
4700B+b
4788H+b
4888H+b
4888H+b
4988H+b
4988H+b

BOOS
• ..
•

BOOS

---11
81

28
· 21
23
24
25
26

22 ..
23 ..
24 ..

4Al0B+b
4A88B+b
4BIIB+b
4B80B+b
4CIIH+b
4C88H+b

BIOS
BIOS

~------~---112-76 11-26 (directory and data)

(All Inforaation Contained Herein ia Proprietary to Digital Research.)

6. THE BIOS ENTRY POINTS

The entry points into the BIOS from the cold start loader and BOOS
are detailed below. Entry to the BIOS is through a ·• jump vector"
located at 4A~0H+b, as shown below (see Apoendices Band c, as well).
~he jump vector is a sequence of 17 jum~- instructions which send
orogram control to the individual BIOS subroutines. The BIOS
subroutines may be empty for certain functions (i.e., they may contain
c:1 single RE·r operation) during regeneration of CP/M, but the entries
must be present in the jump vector.

·rhe jum;, vector at 4MJ0H+b takes the form shown below, where the
individual jump addresses are given to the left:

4A00H+b JMP soo·r . ARRIVE HERE FROM COLD START LOAD I

4A03H+o JMP wBOO'i' . ARRIVE HERB FOR WARM START I

4Mf68+b JMP CONST ; CHECK FOR CONSOLE CHAR READY
4A09H+b JMP CONIN . READ CONSOLE CHARACTER IN ,
4A0CH+b JMP CONOUT ; WRITE CONSOLE CHARACTER OUT
4A0FH+b· JMP LIST . WRITE LISTING CHARAC'rER OUT ,
4Al2H+b J!4P .!?UNCH . WRITE CHARACTER TO PUNCH DEVICE I

4Al5H+b JMP READER • READ READER DEVICE ,
4Al8H+b JMP HOME ; MOVE TO TRACK 00 ON SELECTED DISK
4A1Bd+b JMP SELOSK . SELECT DISK DRIVE ,
4AlEH+o JMP SETTRK . SE·r '!'RACK NUMBER I

4A21H+o JMP se:·rSEC ; SET SEC~OR NUMBER
4A24H+b JMP SETOMA . SET OMA ADDRESS I

4A27H+b JMP READ . READ SELECTED SECTOR I

4A2AH+b JMP WRITE • WRITE SELECTED SECTOR ,
4A2DH+b JMP LISTS'I' . RE'tURN tis·r s·rA·rus I

4A30H+b JMP SECTRAN . SECTOR TRANSLATE SUBROUTINE ,

Each jump address corresl;)Onds to a particular subroutine which
performs tne specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
whicn results from calls on BOOT and WBOOT, simple character I/0
performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST, and diskette I/0 performed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple characte.r I/0 operations are assumed to be performed in
ASCII, upper and lower case, with high order (parity bit) set to zero.
An end-of-file condition for an input device is given by an ASCII
control-z (lAH). Peripheral devices are seen by CP/M as ·•1ogica1·
devices, and are assigned to physical devices within the BIOS.

In order to operate, the BOOS needs only the CONST, CONIN, and
CONOUT subroutines {LIST, PUNCH, and READER may be used by PIP, but
not the BOOS). Further, the LISTST entry is used currently· only by
DES~OOL, and thus, the initial version of CBIOS may have empty
subroutines for the remaining ASCII devices.

(All Information Contained Herein is Proprietary to Digital Research.)

CONSOLE

LIST

PUNCH

READER

The principal interactive console which communicates
with the operator, accessed through CONST, CONIN, and
CONOUT. ·l'ypically, the CONSOLE is a device such as a
CRT or Teletype.

The principal listing device, if it exists on your
system, which is usually a hard-copy device, such as a
printer or Teletype.

The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

The principal tape reading device, such as a simple
optical reader or Teletype.

Note that a single y;,eripheral can be assigned -as
the LIST, PUNCH, and READER device simultaneously. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not •hang• if the device is accessed by PIP or some
other user program. Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a lAH tctl-Z) in reg A to indicate
immediate end-of-file.

For added flexibility, the user -· can ogtionally
implement the "IOBYTEd function wnich allows
reassignment of physical and logical devices. The
IOBYTE function creates a mapping of logical to
physical devices which can be altered during CP/M
processing (see the STAT command). The definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single location in memory (currently

·iocation 0003H) is maintained, called IOBYTE, which
defines the logical to 1;>hysical device mapping which is
in effect at a particular time. The mapping is
performed by splitting the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown belC71f:

most significant least significant

------------~----------------------------IOBYTE AT 0003H I LIST I PUNCH I READER I CONSOLE I
---bits 6,7 bits 4,5 bits 2,3 bits 8,1

The value in each field can be in the range 8-3,
defining the assigned source or destination of each
logical device. The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research.)

191

CONSOLE field (bits 0,1)
0 - console is assigned to tne console printer device (TTY:)
1 - console is assigned to the CRT device (CR'r:)
2 - batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (SAT:)
3 - user defined console device (UCl:)

READER field (bits 2,3)
0 - READER is the Teletype device· (TTY:)
l - READER is the high-speed reader device (RDR:)
2 - user defined reader i 1 (URl:)
3 - user defined reader i 2 (UR2:)

PUNCH
0
l
2
3

field (bits 4,5)
- ~UNCH is the Teletype device (TTY:)
- PUNCH is the high soeed punch device (PUN:)
- user defined punch# 1 (UPl:)
- user defined 9unch i 2 (UP2:)

LIS~ field (bits 6,7)
0 - LIST is the Teletype device (TTY:)
l LIST is the CRT device (CRT:)
2 - LIST is the line printer device (L.PT:)
3 us~r defined list device (ULl:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of your
CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the existence of the IOBYTE at location
0~~38), except for PIP which allows access to the
physical devices, and STAT which allows
logical-physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facilities Guide"). In any case, the IOBYTE
implementation should be omitted until your basic CBIOS
is fully im?lemented and tested; then add the IOBYTE to
increase your facilities.

Disk I/0 is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
?articular disk, and the direct memory access (OMA)
address involved in the I/0 operation. After all these
oarameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/0 operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations. Similarly,
there may be a single call to set the OMA address,
followed by several calls which read or write from the
selectea OMA address before the DMA address is changed.
The track and sector subroutines are always called
before the READ or WRITE operations are performed.

(All Information Contained fferein is Proprietary to Digital Research.)

192

BOOT

WBOOT

CONST

CONIN

Note that the READ and WRITE routines should
perform several retries (10 is standard) before
reporting the error condition to the BOOS. If the
error condition is returned to the BOOS, it will report
the error to the user. The HOME subroutine may or may
not actually perform the track 00 seek, depending upon
your controller characteristics: the important point is
that track 00 has been selected for the next operation,
and is often treated in exactly the same manner as
SETTRK with a parameter of 08.

The exact responsibilites of each entry point
subroutine are given below:

The BOOT entry point gets control from the cold start
loader and is responsible for basic system
initialization, i_ncluding sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point. The various system parameters which are set by
the WBOOT entry point must be initialized, and control
is transferred to the CCP at 3400B+b for further
processing. Note that reg C must be set to zero to
select drive A.

The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user
program branches to location 000BH, or when the CPU is
reset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if you have
completed your patch). System parameters must be ini
tialized as shown below:

location 0,1,2 set to JMP WBOOT for warm starts
(00008: JMP 4A03H+b)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to JMP BDOS, which is the
primary entry point to CP/M for
transient programs. (8085B: JMP
3C86H+b)

(see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 3400H+b to (re)start
the system. Upon entry to the CCP, register C is set
to the drive to·select after system initialization.

Sample the sta~us of the currently assigned console
device and return BFFH in register A if a character is
ready to read, and 808 in register A if no console
characters are ready.

, Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

193

CONOUT

LIS•r

PUNCH

READER

HOME

SELDSK

set the parity oit (high order bit) to zero. If no
console character is ready, wait until a character is
typed oefore returning.

Send the character from register C to the console
output device. The character is in ASCII, with high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if your
console device requires some time interval at the end
of the line (sucn as a TI Silent 700 terminal). You
can, if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for exam9le).

Send the character from register C to the currently
assigned listing device. The character is in ASCII
with zero parity.

Send the cnaracter from register C to the currently
assigned punch device. The character is in ASCII with
zero parity.

Read the next character from the currently assigned
reader device into register A with zero parity (high
order bit must be zero), an end of file condition is
reported by returning an ASCII control-z (lAH).

Return the disk head of the currently selected disk
(initially disk A) to the track 00 position. If your
controller allows access to the track 0 flag from the
drive, step the head until tne track 0 flag is
detected. If your controller does not support this
feature, you can translate the HOME call into a call
on SETTRK witn a parameter of 0.

Select the disk drive given by register C for further
operations, wnere register C contains 0 for drive A, l
for drive B, and so-forth up to 15 for drive P (the
standard CP/M distribution version supports four
drives). On each disk select, SELDSK must return in
HL the base address of a 16-byte area, called the Disk
Parameter Header, described in the Section 10. For
standa~d floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically. If there is an
attempt to select a non-existent drive, SELDSK returns
HL=0000H as an error indicator. Although SELDSK must
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/0 function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/0, and many
controllers will unload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research.)

194

SETTRK

SETSEC

SETDMA

READ

_.RITE

t f
before selecting the new drive. This would cause an
excessive amount of noise and disk wear.

Register BC contains the track number for subsequent
disk accesses on the currently selected drive. rou
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs. Register BC can take on values in the range
0-76 corresponding to valid track numbers for standard
floppy disk drives, and 0-65535 for non-standard disk
subsystems.

Register BC contains the sector number (1 through 26)
for subsequent disk accesses on the currently selected
drive. You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs.

Register BC contains the OMA (disk memory access)
address for subsequent read or write operations. for

-examole, if B • 00H and C • 88B when SETDMA is called,
then· all subsequent read operations read their data
into 80H through 0FFH, and all subsequent write
00.erations get their data from 80H through 0FFH, until
the next call to SETDMA occurs. The initial OMA
address is assumed to be 80H. Note that the
controller need not actually suoport airect memory
access. If, for example, all data is received and
sent through I/0 ~orts, the CBIOS which you construct
will use the 12ij byte area starting at the selected
OMA address for the memory buffer during the following
read or write operations.

Assuming the drive has been selected, the track has
been set, the sector has been set, and the DMA address
has been specified, the READ subroutine attemo.ts to
read one sector based upon these parameters, and
returns the following error codes in register A:

0 no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a zero or non-zero
value as tne return code. That is, if the value in
register A is 0 then CP/M assumes that the disk
operation completed 0.roperly. If an error occurs,
however, the CBIOS should attempt at least 11 retries
to see if the error is recoverable. When an error is
reported the BOOS will print the message "BOOS £RR ON
x: BAD SEC·rOR". The operator then has the option of

·typing <er> to ignore the error, or ctl-C to abort.

~rite the data from the currently selected OMA address
to the currently selected drive, track, and sector.
The data should be marked as •non deleted data• to

(All Information Contained Herein is Proprietary to Digital Research.)

195

LISTST

SEC'I'AAN

maintain compatibility with other CP/M systems. The
error codes given in the READ command are returned in
register A, with error recovery attempts as described
above.

Return the ready status of the list device. Used by
the OESPOOL program to im9rove console resJ.?Qnse during
its operation. The value ~0 is returned in A if the
list device is not ready to accept a character, ?nd
0FFH if a character can be sent to the orinter. Note
that a 00 value always suffices. -

Performs sector logical to physical sector translation
in order to improve the overall response of CP/M.
Standard CP/M systems are shipped with a "skew factor"
of 6, where six physical sectors are skipped between
each logical read operation. This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector. In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response. Note, however,
that you should maintain a single density IBM
comoatible version of CP/M for information transfer
into and out of your computer system, using a skew
factor of 6. In general, SECTRAN receives a logical
sector number in BC, and a translate table address in
DE. The sector number is used as an index into the
translate taole, with the resulting physical sector
number in HL. For stanaard systems, the tables and
indexing code is provided in the CBIOS and need not be
changed.

(All Information Contained Herein is Proprietary to Digital Research.)

196

,. , .. •r

7. A SAMPLE BIOS

The program shown in Appendix C can serve as a basis for your
first BIOS. The simolest functions are assumed in this BIOS, so that
you can enter it through the front panel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions. The scratch area
reserved in page zero (see Section 9) for the BIOS is used in this
program, so that it could be im~lemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial sign-on message and perform better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.)

197

8. A SAMPLE COLD s·rART LOADER

The program shown in Appendix D can serve as a basis tor your cold
start loader. The disk read function must oe supplied by the user,
and the program must be loaded somehow starting at location 0000.
Note that space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will probably want to get this loader onto the first disk sector
(track 0. sector 1), and cause your controller to load it into memory
automatically upon system start-u9. Alternatively, you may wish to
place tne cold start loader into ROM, and place it above the CP/M
system. In this case. it will be necessary to originate the program
at a higher address, and key-in a jump instruction at system start-up
which brancnes to the loader. Subsequent warm starts will not require
this key-in o~eration, since the entry point 'WBOOT' gets control,
thus orinqing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
be enhanced on later versions.

(All Information Contained Herein is ~roprietary to Digital Research.)

198

9. RESERVED LOCATIONS IN PAGE ZERO

Main memory page zero, between locations 00H and ~FFH, contains
several segments of code and data which are used during CP/M
processing. The code and data areas are given below for reference
purposes.

Locations
from to
0000H - 0002H

0003H - 00038

0004H - 0004H

00058 - 0007H

0008H - 0027H

0030H - 00378

0038H - 003AH

003BH - 003FH

0040H - 004FH

0050H - ~~SBH

005CH - 007CH

007DH - 007FH

Contents

Contains a jump instruction to the warm start
entry point at location 4A03H+b. This allows a
simple programmed restart (JMP 0000H) or manual
restart from the fro.nt panel.

Contains the Intel standard IOBYTE,
optionally included in the user's
described in Section 6.

which· is
CBIOS, as

Current default drive number (0=A, ••• ,15=P).

Contains a jump instruction to the BDOS,and
serves two purposes: JMP 0005H provides the
primary entry point to the BOOS, as described in
the manual "CP/M Interface Guide," and LHLD
0006H brings the address field of the
instruction to the HL register pair. This value
is the lowest aadress in memory used by CP/M
(assuming the CCP is being overlayed). Note
that the DDT program will change the address
field to reflect the reduced memory size in
debug mode.

(interrupt locations ·1 through 5 not used)

(interrupt location 6, not currently used -
reserved)

Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakpoints, but is not otherwise
used by CP/M.

(not currently used - reserved)

16 byte area reserved for scratch by CBIOS, but
is not used f~r any purpose in the distribution
version of CP/M

(not currently used - reserved)

default
transient
Processor.

file control .block produced
program by the Console

Optional default random record position

for a
Command

(All Information Contained Herein is Proprietary to Digital Research.)
· 199

80888 - 00FFH default 12d byte disk buffer (also filled with
the command line when a transient is loaded
under the CCP).

Note that this intormation is set-up for normal operation under
the CP/M system. but can be overwritten by a transient program if the
BOOS facilities are not required by the transient.

If. for example. a particular program performs only simple I/0 and
must begin execution at location 0. it can be first loaded into the
·rPA. using normal CP/M facilities, with a small memory move program
which gets control wnen loaded (the memory move program must get
control from location 0100H. which is the assumed beginning of all
transient programs). The move program can then proceed to mov~ the
entire memory image down to location 0. and pass control to the
starting address of the memory load. Note that if the BIOS is
overwritten. or if location 0 (containing the warm start entry point)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start sequence.

(All Information Contained aerein is Proorietary to Digital Research.)

~nn

18. DISK PARAMETER TABLES.

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix c,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (16-byte)
parameter header which both contains information about the disk
and provides a scratchpad area for certain BDOS operations.
format of the disk parameter header for each drive is shown below

disk
drive

The

Disk Parameter Header

XLT I 0000 I 0000 I 0000 IDIRBUFI DPB csv

16b

ALV

16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT Address of the logical to physical translation vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same). Disk drives
with identical sector skew factors share the same
translate tables.

0000 Scratchpad values for use within the BDOS (initial
value is unimportant).

DIRBUF

DPB

csv

ALV

Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same
scratchpad area.

Address of a disk parameter block for this drive.
Drives with identical disk characteristics address the
same disk parameter block.

Address of a scratchpad area used for software check
for changed disks. This address is different for each
DPB.

Address of a scratchpad area used by the BDOS to keep
disk storage allocation information. This address is
different for each DPH.

Given n disk drives, the DPB's are arranged in a table whose first row
of 16 bytes corresponds to drive 0, with the last row corresponding to
drive n-1. The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

201

DPBASE:
---00 IXLT 001 0000 I 0000 I 0000 IDIRBUFIDBP 00ICSV 00IALV 001
---01 IXLT 011 0000 I 0000 I 0000 IDIRBUFIDBP 01ICSV 01IALV 011
---(and so-forth through)

---n-llXLTn-li 0000 I 0000 I 0000 IDIRBUFIDBPn-llCSVn-llALVn-11

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence of
operations returns the table address, with a 0000H returned if the
selected drive does not exist.

NDISKS EQU 4 ;NUMBER OF DISK DRIVES
• • • • • •
SELDSK:

;SELECT DISK GIVEN BY BC
LXI H,0000H ;ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS ;CY IF SO
RNC ;RET IF ERROR
;NO ERROR, CONTINUE
MOV . L , C ; LOW (DI SK)
MOV H,B ;HIGH(OISK)
DAD H ;*2
DAD H ;*4
DAD H ; *8
DAD H ; *16
LXI D,DPBASE ;FIRST OPH
DAD D ;DPH (DISK)
RET

The translation vectors (XLT 00 through XLTn-1) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-1. The Disk
Parameter Block (DPB) for each drive is more complex. A Qarticular
DPS, which is addressed by one or more DPH'sr takes the general form

---SPT IBSHIBLMIEXMI DSM ORM IAL0IAL11 CKS OFF
---16b 8b 8b Sb 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the "Sb" or ••16b"
indicator below the field.

SPT is the total number of sectors per track

BSH is the·data allocation block shift factor. determined
by the data block allocation size.

(All Information Contained Herein is Proprietary to Digital Research.)

202

EXM is the extent mask, determined by the data block
al~ocation size and the number of disk blocks.

DSM det~rmines the total storage capacity of the disk drive

DRM determines the total number of directory entries which
can be stored on this drive AL0,AL1 determine reserved
directory blocks.

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which is not an entry in the disk parameter block. Given
that the designer has selected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS
1,024
2,048
4,096
8,192

16,384

BSH
3
4
5
6
7

BLM
7

15
31
63

127

where all values are in decimal. The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM> 255
1,024 0 N/A
2,048 1 0
4,096 3 l
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+l) is the total number of bytes held by the drive and, of course,
must be within the capacity of the physical disk, not counting the
reserved operating system tracks.

The DRM entry is the one less than the total number of directory
entries, which can take on a 16-bit value. The values of AL0 and ALI,
however, are determined by ORM. The two values AL0 and ALl can
together be considered a string of 16-bits, as shown below.

(All Information Contained Herein is Proprietary to Digital Research.)

203

AL0 I ALl
---1

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labelled AL0, and 15 corresponds to the low order bit of the byte
labelled ALl. Each bit position reserves a data block for number of
directory entries, thus allO'fling a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to.the right until position 15). Each directory entry occupies
32 bytes, resulting in the follO'fling table

BLS
1,024
2,048
4,096
8,192

16,384

Directory Entries
32 times i bits
64 times t bits
128 times t bits
256 times I bits
512 times t bits

Thus, if ORM• 127 (128 directory entries), and BLS • 1024, then there
are 32 directory entries per block, requiring 4 reserved blocks. In
this case, the 4 high order bits of AL0 are set, resulting in the
values AL0 = 0F0H and ALl = 00H.

The CKS value is determined as follO'fls: if the disk drive media
is removable, then CKS = (DRM+l)/4, where ORM is the last directory
entry number. If the media is fixed, then set CKS = 0 (no directory
records are checked in this case).

Finally,
skipped at the
automatically
mechanism for
partitioning a

the OFF field determines the number of tracks which are
beginning of the physical disk. This value is

added whenever SETTRK is called, and can be used as a
skipping reserved operating system tracks, or for
large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several DPH's
can address the same DPB if their drive characteristics are identical.
F~rther, the DPB can be dynamically changed when a new drive is
addressed by sim~ly changing the pointer in the DPH since the BOOS
copies the DPB values to a local area whenever the SELDSK """fttnction is
invoked.

Returning back to the DPH for a particular drive, note that the
two address values CSV ~nd ALV remain. Both addresses reference an
area of uninitialized memory follO'fling the BIOS. The areas must be
unique for each drive, and the size of each area is determined by the
values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive. If CKS = (DRM+l)/4, then you must reserve {DRM+l)/4 byte-$. for
directory check use. If CKS = 0, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research.)

20-4

'l'he size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+1.

'l'he CBIOS shown in Appendix C demonstrates an instance
tables for standard 8" single density drives. It may be
examine this program, and compare the tabular values
definitions given above.

of these
useful to
with the

(All Information Contained Herein is Proprietary to Digital Research.)

205

11. THE DISKDEF MACRO LIBRARY.

A macro library is shown in Appendix P, called DISKDEF, which
greatly simplifies the table construction process. You must have
access to the MAC macro assembler, of course, to use the DISKDEP
facility, while the macro library is included with _all CP/M 2.8
distribution disks.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
••••••
DISKS n
DISICOEP ", ...
DISICDEP 1 ••••
••••••
DISKDEP n-1
• • • • • •
ENOEF

where the MACLIB statement loads the OISKDEF.LIB file (on· the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-1 (corresponding to logical drives A
through P). N~te that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically
directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEP macro call is

DISKDEF dn,fsc,lsc,[skf),bls,dks,dir,cks,ofs,[8]

where

dn is the logical disk number, 0 to n-1
fsc is the first physical sector number (8 or 1)
lsc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of 11 checked". directory entries
ofs is the track offset to logical track 00
(0] is an optional 1.4 compatibility ·flag

The value Mdn• is the drive number being defined with this DISKDEP

(All Information Contained Herein is Proprietary to Digital Research.)

206

macro invocation. The •fsc• parameter accounts for differing sector
numbering systems, and is usually 0 or 1. The •1sc• is the last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translatio~
table according t.o the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omitted (or equal to 0). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The •dks"
specifies the total disk size in "bls• units. That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. The value of "dir" is the total number of
directory entries which may exceed 255, if desired. The "cks"
parameter determines ~the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem. If
the disk is permanently mounted, then the value of cks is typically 0,
since the probability of changing disks without a restart is quite
low. The "of s" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of 1.4 which have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions. Normally, this
parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i,j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research.)

207

DISKS
DISKDBP
DISKDEP
DISKDBP
DISKDEP
• • • •
BNDEP

4
8,l,26,6,1824,243,64,64,2
1,8
2,8
3,0

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1824 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
systan tracks.

The DISKS macro generates n Disk Parameter Headers (DPH's),
starting at the DPB table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four
drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE
OPEi:
DPEl:
DPE2:
DPEJ:

EOU $
OW XLT8,0008B,0088B,0880B,DIRBUF,DPB0,CSV0,ALV0
DW XLT0,8000B,0000B,0000H,DIRBUF,DPB0,CSV1,ALV1
OW XLT0,0000H,0000H,0000B,DIRBUF,DPB0,CSV2,ALV2
OW XLT0,0000H,0000H,0000H,OIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the.
beginning table addresses for each drive 0 through 3. The values·
contained within the disk parameter header are described in detail in
the previous section. The check and allocation vector addresses are
generated by the ENDEF macro in the ram area following the BIOS code
and tables.

Note that if the wskf• (skew factor) parameter is omitted (or
equal to 0), the translation table is omitted, and a 00008 value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
00008, and simply returns the original logical sector from BC in the
BL register pair. A translate table is constructed when the skf
parameter is present, and the (non-zero) table address is placed into
the corresponding DPH's. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is s~ecified in the
DISKDEF macro call:

XLT8: DB
DB

l,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,28,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four~drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

208

4C72 •

4DB0 •
813C •

BEGDAT EOU $
(data areas)
ENDDAT EOU $
DATSIZ EOU $-BEGDAT

which indicates that uni~itialized RAM begins at location 4C72H, ends
at 4DBIH-l, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d•A, ••• ,P) and displays
the values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent
b: Records/ Block
s: Sectors/ Track
t: Reserved Tracks

Three examples of DISKDEF macro invocations are
corresponding STAT parameter values (the last
a-megabyte system) •

DISKDEF 0,l,58,,2048,256,128,128,2

shown below with
produces a full

r•4196, k•Sl2, d•l28, c•l28,. e•256, b•l6, s•58, t•2

DISKDEF 0,l,58,,2048,1124,388,0,2
r•l6384, k•2048, d•380, c•0, e•l28, b•l6, s•S&, t•2

DISKDEF 0,l,58,,16384,512,128,128,2
r•65536, k•8192, d•l28, c•l28, e•l824, b•l28, s•S8, t•2

(All Information Contained Herein is Proprietary to Digital Research.)

209

12. SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BOOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BOOS information to perform the operations automatically.

Upon each call to WRITE, the BOOS provides the following
information in register C:

0
1
2

=
=
=

normal sector write
write to directory sector
write to the first sector
of a new data block

Condition 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when the
write is to other than the first sector of an unallocated block, or
when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written. In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on your CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by "hst."
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on line 57, while the SELDSK entry point must be
augmented by the code starting on line 65. Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk'at this point
(it is selected later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point. SECTRAN performs a trivial trivial function of
returning the physical sector number.

The principal entry points are READ and WRITE, starting on lines
110 and 125, respectively. These subroutines take the place of your
previous READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research.)

210

disk nuwber, hsttrk is the host track number, and hstsec is the host
sector n,,mber (which may require translation to a physical sector
number). You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms.

This particular algorithm was tested using an 88 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors;· usable storage increased to 57
megabytes, with a corresponding 4001 im~rovement in overall res1;>0nse.
In this situation, there is no apparent overhead involved in
deblocking sectors, with the advantage that user programs still
maintain the (less memory consuming) 128-byte sectors. This is
primarily due, of course, to the information provided by the BOOS
which eliminates the necessity for pre-read operations to take place.

(All Information Contained Herein is Proprietary to Digital Research.)

211

0000 =
ffff =
0000 =

0000 =

0000 =
0806 =
1880 =
1600 =
1603 =

3000

1880 =
0002 =
0031 =
0019 =
0018 =

f800 =
ff0f =
0078 =
0079 =
007b =
007f =

0078 =
0079 =
007a =
00ff =
0003 =
0004 =
0100 =

3000 310001

3003 db79
3005 db7b

3007 dbff
]iii S~l330

APPENDIX A: THE MDS COLD START LOADER

1 MDS-800 Cold Start Loader for CP/M 2.0
1
1 Version 2.0 August, 1979 .
I

false equ
true equ
testing equ .
I

bias

bias

cpmb
bdos
bdose
boot
rboot .
I

1
bdosl
ntrks
bdoss
bdos0
bdosl .
I

if
equ
endif
if
equ
endif
equ
equ
equ
equ
equ

org

equ
egu
egu
equ
egu

mon80 equ
rmon80 equ
base equ
rtype equ
rbyte equ
reset equ .
I

dstat equ
ilow equ
ihigh equ
bsw equ
recal equ
read£ equ
stack equ
• I

rs tart:
lxi

; clear
in
in

; check
colds tart:

in
ini JnZ

0
not false
false

testing
03400h

not testing
0000h

bias
806h+bias
1880h+bias
1600h+bias
boot+3

;base of dos load
;entry to dos for calls
;end of dos load
;cold start entry point
;warm start entry point

3000h ;loaded here by hardware

bdose-cpmb
2 ;tracks to read
bdosl/128
25
bdoss-bdos0

;t sectors in bdos
;t on track 0
;ion track 1

0f800h
0f f0fh
078h
base+l
base+3
base+7

base
base+l
base+2
0ffh
3h
4h
100h

;intel monitor base
;restart location for mon80
;'base' used by controller
;result type
;result byte
;reset controller

;disk status port
;low iopb address
;high iopb address
;boot switch
;recalibrate selected drive
;disk read function
;use end of boot for stack

sp,stack;in case of call to mon80
disk status

rtype
rbyte

if boot switch is off

bsw
gg~dstartswitch on?

212

380e d37f

3010 0602
3012 214230

3015 7d
3016 d379
3018 7c
3019 d37a

,
,
'
. ,
start:
1 ,

301b db78 wait0:
lit¥ aif~30

3022 db79
3024 e603
3026 fe02

3028 d20030

302b db7b

302d 17
302e dc0fff
3031 lf
3032 e6le

3034 c20030

3037 110700
303a 19
303b 05
303c c21530

• , . ,

1

J

J

J
383f c30016 ,

'

clear the controller
out reset 7logic cleared

mvi
lxi

b,ntrks ,number of tracks to read
h,iopb0

read first/next track into cpmb
mov a,l
out ilow
mov a,h
out ihigh
in dstat
ani 4
Jz wait0

check dis~ status
in rtype
ani llb
cpi 2

if
enc
endif
if
jnc
endif

testing
rmon80 :go to monitor if 11 or 18

not testing
rstart ,retry the load

in rbyte :i/o complete, check status
if not ready, then go to mon80
ral

, cc rmon80 :not ready bit set
rar ;restore
ani 11110b ,overrun/addr err/seek/ere

if
cnz
endif
if
jnz
encUf

lxi
dad
dcr
jnz

testing
rmon80 :go to monitor

not testing
rstart ,retry the load

d,iopbl
d
b
start

:length of iopb
7addressing next iopb
,count down tracks

jmp boot, print message, set-up jmps
jmp boot

J parameter blocks

213

3042 88 iopb0: db 80h 1iocw, no update
3043 04 db readf 1read function
3044 19 db bdos8 1i sectors to read trk 0
3045 08 db 0 1 track 0
3046 02 db 2 1start with sector 2, trk 0
3047 0000 dw cpmb 1start at base of bdos
0007 = iopbl egu $-iopb0

• I

3049 80 iopbl: db 80h
304a 04 db readf
304b 18 db bdosl ,sectors to read on track 1
304c 01 db 1 1 track l
304d 01 db 1 ,sector 1
304e 800c dw cpmb+bdos0*128 1 base of second rd
3050 end

214

0014 =

4a00
3400 =
3c06 =
1600 =
002c =
0002 =
0004 =
0080 =
000a =

c3b34a

APPENDIX B: THE MDS BASIC I/0 SYSTEM (BIOS)

, mds-800 i/o drivers for cp/m 2.0
, (four drive single density version)

, version 2.0 august, 1979
• I

vers egu 20 ,version 2.8

1 copyright (c) 1979
1 digital research
, box 579, pacific grove
1 california, 93950
• ,

cpmb
bdos
cpml
nsects
offset
cdisk
buff
retry

. ,
' ' • I

• ,
• I

' . ,
• ,
• I

; . ,
• , . , . ,
;
• ,

'

org
egu
egu
egu
egu
equ
equ
equ
equ

4a00h 1base of bios in 20k system
3400h 1base of cpm ccp
3c06h 1base of bdos in 20k system
$-cpmb ,length (in bytes) of cpm system
cpml/1281number of sectors to load
2 ,number of disk tracks used by cp
0004h ,address of last logged disk
0080h :default buffer address
10 ,max retries on disk i/o before e

following functions
cold start
warm start (save i/o byte)

perform
boot
wboot
(boot and wboot are the same for mds)

console status const

conin
conout
list
punch
reader
home

reg-a= 00 if no character ready
reg-a• ff if character ready
console character in (result in reg-a)
console character out (char in reg-c)
list out (char in reg-c)
punch out (char in reg-c)
paper ~ape reader in (result to reg-a)
move to track 00

(the following calls set-up the io parameter bloc
mds, which is used to perform subsequent reads an
seldsk select disk given by reg-c (0,1,2 •••)
settrk set track address (0, ••• 76) for sub r/w
setsec set sector address (1, ••• ,26)
setdma set subsequent dma address (initially 80h

1 read/write assume previous·calls to set i/o parms
1 read read track/sector to preset dma address
1 write write track/sector from preset dma addres .
I . , indiviual routines

4a00
4a03
4a06
4a09
4a0c

c3c34a wboote:
c3614b

jump
jmp
jmp
jmp
jmp
jmp

vector for
boot
wboot
const
conin
conout

c3644b
c36a4b

215

4a0f c36d4b
4al2 c3724b
4al5 c3754b
4al8 c3784b
4alb c37d4b
4ale c3a74b
4a21 c3ac4b
4a24 c3bb4b
4a27 c3cl4b
4a2a c3ca4b
4a2d c3704b
4a30 c3bl4b

4a33+=
4a33+824a00
4a37+000000
4a3b+6e4c73
4a3f+0d4dee
4a43+824a00
4a47+000000
4a4b+6e4c73
4a4f+3c4dld
4a53+824a00
4a57+000000
4a5b+6e4c73
4a5f+6b4d4c
4a63+824a00
4a67+000000
4a6b+6e4c73
4a6f+9a4d7b

4a73+=
4a73+la00
4a75+03
4a76+07
4a77+00
4a78+f200
4a7a+3f00
4a7c+c0
4a7d+08
4a7e+l000
4a80+0200
4a82+•
4a82+01
4a83+07
4a84+0d
4a85+13
4a86+19
4a87+05
4a88+0b
4a89+11
4a8a+l7
4a8b+03

. ,

dpbase
dpe0:

dpel:

dpe2:

dpe3:

dpb0

xlt0

jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

maclib
disks
egu
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
diskdef
equ
dw
db
db
db
dw
dw
db
db
dw
dw
equ
db
db
db
db
db
db
db
db
db
db

list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst ;list status
sectran

diskdef ;load the disk definition library
4 ;four disks
$;base of disk parameter blocks
xlt0,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb0 ;dir buff,parm block
csv0,alv0 ;check, alloc vectors
xltl,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpbl ;dir buff,parm block
csvl,alvl ;check, alloc vectors
xlt2,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb2 ;dir buff,parm block
csv2,alv2 ;check, alloc vectors
xlt3,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb3 ;dir buff,parm block
csv3,alv3 ;check, alloc vectors
0,1,26,6,1024,243,64,64,offset
$;disk parm block
26 1 sec per track
3 ;block shift
7 ;block mask
0 ;extnt mask
242 ;disk size-1
63 ;directory max
192 ;alloc0
0 ; allocl
16 ; check size
2 1offset
$;translate table
1
7
13
19
25
s
11
17
23
3

216

4a8c+09
4a8d+0f
4a8e+l5
4a8f+02
4a90+08
4a91+0e
4a92+14
4a93+la
4a94+06
4a95+0c
4a96+12
4a97+18
4a98+04
4a99+0a
4a9a+l0
4a9b+l6

4a73+=
00lf+=
0010+=
4a82+=

4a73+=
00lf+=
0010+=
4a82+=

4a73+=
00lf+=
0010+=
4a82+=

00fd =
00fc =
00f3 =
007e =

f800 =
ff0f =
f803 =
£806 =
f809 =
f80c =
f80f =
£812 =

dpbl
alsl
cssl
xltl

dpb2
als2
css2
xlt2

dpb3
als3
css3
xlt3 . ,
• ,

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
diskdef
egu
egu
egu
egu
diskdef
egu
egu
egu
egu
diskdef
egu
equ
equ

9
15
21
2
8
14
20
26
6
12
18
24
4
10
16
22
1,0
dpb0
als0
css0
xlt0
2 , fiJ
dpb0
als0
cssfiJ
xlt0
3,0
dpb0
als0
css0
xlt0 egu

endef occurs at

;equivalent parameters
:same allocation vector size
:same checksum vector size
:same translate table

:equivalent parameters
;same allocation vector size
;same checksum vector size
:same translate table

;equivalent parameters
;same allocation vector size
;same checksum vector size
,same translate table
end of assembly

; end of controller - independent code, the remaini
1 are taiiored to the particular operating environm
; be altered for any system which differs from the

1 the following code assumes the mds monitor exists
1 and uses the i/o subroutines within the monitor

1
revrt
intc
icon
inte
1
1
mon80
rmon80
ci
ri
co
po
lo
csts

we also
equ
equ
equ
egu

assume the mds system has four disk drive
0fdh 1interrupt revert port
0fch 1interrupt mask port
0f3h ;interrupt control port
0111$1110b;enable rst 0(warm boot) ,rst 7

mds monitor equates
egu 0£800.h ;mds monitor
egu 0ff0fh ;restart mon80 (boot error)
egu 0f803h :console character to reg-a
equ 0f806h 1reader in to reg-a
equ 0f809h ;console char from c to console o
egu 0f80ch 7punch char from c to punch devic
egu 0f80fh ;list from c to list device
egu 8f812h ,console status 00/ff to register

217

0078 =
0078 =
0079 =
007b =

0079 =
007a =

0004 =
0006 =
0003 =
0004 =
000d =
000a =

4a9c
4a9f
4aal
4aad
4ab0

0d0a0a
3230
6b20.43f
322e30
0d0a00

4ab3 310001
4ab6 219c4a
4ab9 cdd34b
4abc af
4abd 320400
4ac0 c30f4b

4ac3 318000

4ac6 0e0a
4ac8 cs

4ac9 010034
4acc cdbb4b
4acf 0e00
4adl cd7d4b
4ad4 0e00
4ad6 cda74b
4ad9 0e02
4adb cdac4b

4ade cl
4adf 062c

; .
I

base
dstat
rtype
rbyte .
I

ilow
ihigh .
I

readf
writf
recal
iordy
er
lf .
I

signon:

• I

boot: .
I

; .
I

disk ports and commands
equ 78h ;base of disk command

;disk status (input)
;result type (input)
;result byte (input)

io ports
equ base
equ base+l
equ base+3

equ
equ

equ
equ
equ
egu
equ
equ

; signon
db
db
db
db
db

;print
(note:
lxi
lxi
call
xra
sta
jmp

base+l ;iopb low address (output)
base+2 ;iopb high address (output)

4h ;read function
6h ;write function
3h ;recalibrate drive
4h ;i/o finished mask
0dh ;carriage return
0ah ;line feed

message: xxk cp/m vers y.y
cr,lf,lf
1 20 1 ;sample memory size
• k cp/m vers •
vers/10+'0','.',vers mod 10+'0'
cr,lf,0

signon message and go to ccp
mds boot initialized iobyte at 0003h)

sp,buff+80h
h,signon
prmsg ;print message
a ;clear accumulator
cdisk ;set initially to disk a
gocpm ;go to cp/m

wboot:; loader on track 0, sector 1, which will be skippe
; read cp/m from disk - assuming there is a 128 byt
; start • .
I

;

wboot0:

.
I

lxi

mvi
push
;enter
lxi
call
mvi
call
mvi
call
mvi
call

sp,buff ;using dma - thus 80 thru ff ok f

c,retry ;max retries
b

here on error retries
b,cpmb ;set dma address to start of disk
setdma
c,0 ;boot from drive 0
seldsk
c,0
settrk ;start with track 0
c,2 ;start reading sector 2
setsec

read sectors, count nsects to zero
pop b ;10-error count
mvi b,nsects

218

4ael cs
4ae2 cdcl4b
4ae5 c2494b
4ae8 2a6c4c
4aeb 118000
4aee 19
4aef 44
4af0 4d
4afl cdbb4b
4af4 3a6b4c
4af7 fela
4af9 da054b

4afc 3a6a4c
4aff 3c
4b00 4f
4b01 cda74b
4b04 af
4b05 3c
4b06 4f
4b07 cdac4b
4b0a cl
4b0b 05
4b0c c2el4a

4b0f f3
4bl0 3el2
4bl2 d3fd
4bl4 af
4bl5 d3fc
4bl7 3e7e
4bl9 d3fc
4blb af
4blc d3f3

4ble 018000
4b21 cdbb4b

4b24
4b26
4h29
4b2c
4b2f
4b32
4b35
4b38
4b3b
4b3e

3ec3
320000
21034a
220100
320500
21063c
220600
323800
2100£8
223900

rdsec:

1

rdl:

.
I

• ,
gocpm: .
I

• I . ,

.
I

1

. ,

next sector
b 1save sector count
read
booterr
iod
d,128
d
b,h

:retry if errors occur
:increment dma address
;sector size
1incremented dma address in hl

;read
push
call
jnz
lhld
lxi
dad
mov
mov
call
lda
cpi
jc
must
lda

c,l
setdma

:ready for call to set dma

ios
26
rdl

,sector number just read
:read last sector?

be sector
iot

26, zero and go to next track
;get track to register a

inr
mov
call
xra
inr
mov
call
pop
dcr
jnz

a
c,a
settrk
a
a
c,a
setsec
b
b
rdsec

;ready for call

;clear sector number
1to next sector
:ready for call

,recall sector count
1done?

done with the load, reset default buffer
1 (enter here from cold start boot)
enable rst0 and rst7
di
mvi
out
xra
out
mvi
out
xra
out

a,12h
revrt
a
intc
a,inte
intc
a
icon

:initialize command

1cleared
:rst0 and rst7 bits on

:interrupt control

set default buffer address to 80h
lxi b,buff
call setdma

monitor entry points
a,jmp
0
h,wboote
1 ;jmp wboot at location 00
5
h,bdos
6 :jmp bdos at location 5

address

reset
mvi
sta
lxi
shld
sta
lxi
shld
sta
lxi
shld
leave

7*8
h,mon80
7*8+1

1jmp to mon80 (may have been chan

iobyte set

219

4b41 3a0408
4b44 4f
4b45 fb
4b46 c30834

4b49 cl
4b4a 0d
4b4b ca524b

4b4e cs
4b4f c3c94a

4b52 215b4b
4b55 cdd34b
4b58 c30fff

7 previously selected disk was br send parameter to
lda cdisk ;last logged disk number
mov Cra ;send to ccp to log it in
ei
jmp cpmb

: . error condition occurredr print message and retry ,
booterr:

pop b ;recall counts
dcr C
jz bootedl . try again ,
push b
jmp wboot0 . ,

booter0:
; otherwise too many retries

lxi h,bootmsg
call prmsg
jmp rmon80 ;mds hardware monitor . ,

boobnsg:
4b5b 3f626f4 db '?boot'r0

4b61 c312f8

4b64 cd03£8
4b67 e67£
4b69 c9

• ,
• ,
const: .
I

. ,
conin:

. ,

;console status to reg-a
(exactly the same as mds call)
jmp csts

;console character to reg-a
call ci
ani 7fh ;remove parity bit
ret

conout: ;console character from c to console out
4b6a c309f8 jmp co

4b6d c30ff8

4b70 af
4b71 c9

. ,
list: .
I

.
I

listst:

• ,

;list device out
(exactly the same as mds call)
jmp lo

;return list status
xra a
ret ;always not ready

punch: ;punch device out
; (exactly the same as mds call)

4b72 c30cf8 jmp po
;
reader: ;reader character in to reg-a
; (exactly the same as mds call)

4b75 c306£8 jmp r i .
I

home: ;move to home position

220

• trE:at as track 00 seek I

4b78 0e00 mvi c,0
4b7a c3a74b jmp settrk

• ,
seldsk: ;select disk given by register c

4b7d 210000
4b80 79
4b81 fe04
4b83 d0

4b84 e602
4b86 32664c
4b89 79
4b8a e601
4b8c b7
4b8d ca924b
4b90 3e30

4b92 47
4b93 21684c
4b96 7e
4b97 e6cf
4b99 b0
4b9a 77
a~~s ~i00
4b9e 29
4b9f 29
4ba0 29
4bal 29
4ba2 11334a
4ba5 19
4ba6 c9

4ba7 216a4c
4baa 71
4bab c9

4bac 216b4c
4baf 71
4bb0 c9

4bbl 0600
4bb3 eb
4bb4 09
4bb5 7e
4bb6 326b4c
tBBi ~g

lxi
mov
cpi
rnc

• ,
ani
sta
mov
ani
ora
jz
mvi

setdr ive:
mov
lxi
mov
ani
ora
mov
me¥
dad
dad
dad
dad
lxi
dad
ret . ,

• ,
settrk: ;set

lxi
mov
ret . ,

setsec: ;set
lxi
mov
ret

sectran:

mvi
xchg
dad
mov
sta
,it .

' ,

h,0000h :return 0000 if error
a,c
ndisks ;too large?

; leave hl = 0000

10b ;00 00 for drive 0 ,1 and 10 10 fo
dbank 1 to select drive bank
a,c ;00, 01, 10, 11
lb ;mds has 0,1 at 78, 2,3 at 88
a ;result 00?
setdr ive
a,00110000b :selects drive l in bank

b,a ;save the function
h,iof 1io function
a,m
11001111b 1mask out disk number
b ,mask in new disk number
m,a ;save it in iopb
A:i ;hl=disk number
h ;*2
h ;*4
h ;*8
h ;*16
d,dpbase
d 1hl=disk header table address

track address given by c
h,iot
m,c

sector number given by c
h,ios
m,c

;translate sector be using table at de
b,0 ;double precision sector number i

;translate table address to hl
b ;translate(sector} address
a,m ;translated sector number to a
ios
l,a ;return sector number in l

setdma: ;set dma address given by regs b,c

221

4bbb 69
4bbc 60
4bbd 226c4c
4bc0 c9

4bcl 0e04
4bc3 cde04b
4bc6 cdf04b
4bc9 c9

4bca 0e06
4bcc cde04b
4bcf cdf04b
4bd2 c9

4bd3 7e
4bd4 b7
4bd5 ca

4bd6 es
4bd7 4f
4bd8 cd6a4b
4bdb el
4bdc 23
4bdd c3d34b

4be0 21684c
4be3 7e
4be4 e6f8
4be6 bl
4be7 77

4be8 e620
4bea 216b4c
4bed b6
4bee 77
4bef c9

4bf0 0e0a

4bf2 cd3f4c
4bf5 cd4c4c

4bf8 3a664c

• ,
read:

• ,
• ,
write:

• , . ,
• ,
prmsg:

. ,

• ,
setfunc: . ,

• , . ,

. ,
waitio:

rewait:

. ,

mov l,c
mov !1, b
shld iod
ret

;read next disk record (assuming disk/trk/sec/dma
mvi c,readf ;set to read function
call setfunc
call waitio ;perform read function
ret ;may have error set in reg-a

;disk write function
mvi c,wr itf
call setfunc ;set to write function
call waitio
ret ;may have error set

utility subroutines
; pr int message at h,l to 0
mov a,m
ora a ; zero?
rz
more to print
push h
mov c,a
call conout
pop h
inx h
jmp prmsg

set function for next i/o (command in reg-c)
lxi h,iof ;io function address
mov a,m ;get it to accumulator for maskin
ani 11111000b ;remove previous command
ora C ;set to new command
mov m,a ;replaced in iopb
the mds-800 controller req's disk bank bit in sec
mask the bit from the current i/o function
ani 00100000b ;mask the disk select bit
lxi h,ios ;address the sector selec
ora m ;select proper disk bank
mov m,a ;set disk select bit on/o
ret

mvi c, retry ;max retries before perm error

start the i/o function and·wait for completion
call intype ;in rtype
call inbyte ;clears the controller

lda dbank ; set bank flags

222

4bfb b7
4bfc 3e67
4bfe 064c
4c00 c20b4c
4c03 d379
4c05 78
4c06 d37a
4c08 c3104c

• ,
iodrl:

4c0b d389
4c0d 78
4-c0e d38a . ,
4cl0 cd594c wai t0:
4cl3 e604
4cl5 cal04c . , . ,
4cl8 cd3f4c

• ,
• ,

4clb fe02
4cld ca324c .

I . ,
4c20 b7
4c21 c2384c .

I .
I

4c24 cd4c4c
4-c27 17
4c28 da324c
4c2b lf
4c2c e6fe
4c2e c2384c

• I .
I

4c31 c9 .
I

wready:
4c32 cd4c4c
4c35 c3384c

• I

werror: .
I

; . , . ,
; . ,
;
; .
I .
I

ora a :zero if drive 0,1 and nz
mvi a,iopb and 0ffh ;low address for iopb
mvi b,iopb shr 8 rhigh address for io1;>b
jnz iodrl ;drive bank l?
out ilow ;low address to controlle
mov a,b
out ihigh ;high
jmp wait0

; drive bank 1
out ilow+l0h
mov a,b
out ihigh+l0h

call instat
ani iordy
jz wait0

check io completion ok

address
;to wait for complete

;88 for drive bank 10

;wait for completion
1 ready?

call in type 1must be io complete (00)
01 linked i/o comple
11 (not used)

00 unlinked i/o complete,
10 disk status changed
cpi 10b ;ready status change?
jz wready

must be 00 in the accumulator
ora
jnz

check
call
ral
jc
rar
ani
jnz

a
werror

i/o error bits
inbyte

wready

11111110b
werror

1some other condition, re

;unit not ready

;any other errors?

read or write is ok, accumulator contains zero
ret

;not ready, treat as error for now
call inbyte ;clear result byte
jmp trycount

;return hardware malfunction (ere, track, seek, e
the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
0 - deleted data (accepted as ok above)
1 - ere error
2 - seek error
3 - address error (hardware malfunction)
4 - data over/under flow (hardware malfunct
5 - write protect (treated as not ready)
6 - write error (hardware malfunction)
7 - not ready

223

; (accumulator bits are numbered 7 6 5 4 3 2 1 0) . ,
; it may be useful to filter out the various condit
; but we will get a permanent error message if it i
; recoverable. in any case, the not ready conditio
1 treated as a separate condition for later improve
trycount:
; register c contains retry count, decrement 'til z

4c38 0d dcr c
4c39 c2f24b jnz rewait ;for another try

. , cannot recover from error
4c3c 3e01
4c3e c9

mvi a,l ;error code

. , ret

; intype, inbyte, instat read drive bank 00 or 10
4c3f 3a664c
4c42 b7
4c43 c2494c
4c46 db79
4c48 c9
4c49 db89
4c4b c9

intype: lda dbank
ora a
jnz intypl ;skip to bank 10
in rtype
ret

intypl: in
ret . ,

4c4c 3a664c inbyte: lda
4c4f b7 ora
4c50 c2564c jnz
4c53 db7b in
4c55 c9 ret
4c56 db8b inbytl: in
4c58 c9 ret . ,
4c59 3a664c instat: lda
4c5c b7 ora
4c5d c2634c jnz
4c60 db78 in
4c62 c9 ret
4c63 db88 instal: in
4c65 c9 ret . ,

;
:

rtype+l0h

dbank
a
inbytl
rbyte

rbyte+l0h

dbank
a
instal
dstat

dstat+l0h

;78 for 0,1 88 for 2,3

:
dbank:

data areas (must be in ram)
4c66 00

4c67 80
4c68 04
4c69 01
4c6a 02
4c6b 01
4c6c 8000

iopb:

iof:
ion:
iot:
ios:
iod: . ,

db 0 ;disk bank 00 if drive 0,1

;io
db
db
db
db
db
dw

parameter
80h
readf
1
offset
1
buff

; 10 if drive 2,3
block

;normal i/o operation
;io function, initial read
;number of sectors to read
;track number
;sector number
;io address

; define ram areas for bdos operation

224

endef
4c6e+= begdat equ $
4c6e+ dirbuf: ds 128 :directory access buffer
4cee+ alv0: ds 31
4d0d+ csv0: ds 16
4dld+ alvl: ds 31
4d3c+ csvl: ds lg
4d4c+ alv2: ds 31
4d6b+ csv2: ds 16
4d7b+ alv3: ds 31
4d9a+ csv3: ds 16
4daa+= enddat equ $
013c+= datsiz equ $-begdat
4daa end

225

0014 =

0000 =
3400 =
3c06 =
4a00 =
0004 =
0003 =

4a00
002c =

4a00 c39c4a

APPENDIX C: A SKELETAL CBIOS

: skeletal cbios for first level of cp/m 2.0 altera .
I

msize .
I

egu 20 :cp/m version memory size in kilo

: "bias" is address offset from 3400h for memory sy
: than 16k (referred to as "b" throughout the text) .
I

bias egu
ccp egu
bdos equ
bios egu
cdisk equ
iobyte egu
• I

org
nsects equ .
I .
I

(msize-20) *1024
3400h+bias ;base of ccp
ccp+806h :base of bdos
ccp+l600h :base of bios
0004h ;current disk number 0=a, ••• ,15=p
0003h :intel i/o byte

bios :origin of this program
($-ccp)/128 :warm start sector count

individual subroutines
;cold start

4a03 c3a64a wboote:
4a06 c3114b

jump
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

vector for
boot
wboot
const
conin
conout
list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst
sectran

;warm start
;console status

4a09 c3244b
4a0c c3374b
4a0f c3494b
4al2 c34d4b
4al5 c34f4b
4al8 c3544b
4alb c3Sa4b
4ale c37d4b
4a21 c3924b
4a24 c3ad4b
4a27 c3c34b
4a2a c3d64b
4a2d c34b4b
4a30 c3a74b .

I .
I .
I .
I

4a33 734a00 dpbase:
4a37 000000
4a3b f04c8d
4a3f ec4d70

4a43 734a00
4a47 000000
4a4b f04c8d
4a4f fc4d8f

4a53 734a00
4a57 000000
4a5b f04c8d
4a5f 0c4eae

.
I

;

:console character in
:console character out
:list character out
;punch character out
;reader character out
:move head to home positi
;select disk
:set track number
;set sector number
;set dma address
:read disk
:write disk
:return list status
;sector translate

fixed data tables for four~drive standard
ibm-compatible 8" disks
disk parameter header for disk 00
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk00,all00
disk parameter header for disk 01
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk01,all01
disk parameter header for disk 02
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk02,all02

,
4a63 734a00
4a67 000000
4a6b f04c8d
4a6f lc4ecd

• I

• ,
2f1~ !99~18 trans:

.Aa7b 1 70309
4a7f 150208
4a83 14la06
4a8 7 12180-4
4a8b 1016

• I

dpblk:
4a8d la00
4a8f 03
4a90 07
4a91 00
4a92 £200
4a94 3f00
4a96 c0
4a97 00
4a98 1000
4a9a 0200

• ,
• I . , . ,
boot:

4a9c af
4a9d 320300
4aa0 320400
4aa3 c3ef4a • ,

wboot:
·4aa6 318000
4aa9 0e00
4aab cd5a4b
4aae cd544b

• ,
4abl 062c
4ab3 0e00
4ab5 1602 . ,

:
4ab7 210034

loadl:
4aba cs
4abb dS
4abc es
4abd 4a
4abe cd924b
4acl cl

disk
dw
dw
dw
dw

parameter header
trans,8f/J00h
0000h,0000h
dirbf ,dpblk
chk03,all03

for disk 03

sector translate vector
8B
db
db
db
db
db

~s~s!i1!!1
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22

i11St8FI !:i:~:3
:sectors 9,10,11,12
:sectors 13,14,15,16
;sectors 17,18,19,20
;sectors 21,22,23,24
;sectors 25,26

:disk parameter block, common to all disks
dw 26 :sectors per track
db 3 ;block shift factor
db 7 :block mask
db 0 :null mask
dw 242 :disk size-1
dw 63 :directory max
db 192 :alloc 0
db 0 ;alloc 1
dw 16 ;check size
dw 2 :track offset

end of fixed tables

individual subroutines to perform each function
:simplest case is to just perform parameter initi
xra a :zero in the accum
sta iobyte :clear the iobyte
sta cdisk :select disk zero
jmp gocpm :initialize and go to cp/
:simplest case is to read the disk until all sect
lxi sp,.80h : use space below buffer f
mvi c,0 :select disk 0
call seldsk
call home :go to track 00

mvi b,nsects :b counts i of sectors to
mvi c,0 :c has the current track
mvi d,2 :d has the next sector to
note that we begin by reading track 0, sector 2 s
contains the cold start loader, which is skipped
lxi h,ccp :base of cp/m (initial lo
:load
push
push
push
mov
call
pop

one more sector
b :save sector count, current track
d :save next sector to read
h 1save dma address
c,d :get sector address to register c
setsec :set sector address from register
b ;recall dma address to b,c

227

4ac2 cs
4ac3 cdad4b

4ac6 cdc34b
4ac9 fe00
4acb c2a64a

4ace el
4acf 118000
4ad2 19
4ad3 dl
4ad4 cl
4ad5 05
4ad6 caef4a

4ad9 14
4ada 7a
4adb felb
4add daba4a

4ae0 1601
4ae2 0c

4ae3 cs
4ae4 dS
4aes es
4ae6 cd7d4b
4ae9 el
4aea dl
4aeb cl
4aec c3ba4a

4aef 3ec3
4afl 320000
4af4 21034a
4af7 220100

4afa 320500
4afd 21063c
4b00 220600

4b03 018000
4b06 cdad4b

4b09 fb
4b0a 3a0400
4b0d 4f
4b0e c30034

J
J

• , . ,

• ,

.
I

;

J
J

J

push
call

b ;replace on stack for later recal
setdma ;set dma address from b,c

drive
call
cpi
jnz

set to 0,
read
00h
wboot

no error, move
pop h
lxi d,128
dad d
pop d
pop b
dcr b
jz gocpm

track set, sector set. dma addres

;any errors?
;retry the entire boot if an erro

to next sector
;recall dma address
;dma=dma+l28
;new dma address is in h,1
;recall sector address
;recall number of sectors remaini
;sectors=sectors-1
;transfer to cp/m if all have bee

more sectors remain to load, check for track chan
inr d
mov
cpi
jc

a,d
27
loadl

;sector=27?, if so, change tracks

;carry generated if sector<27

end of current track, go to next track
mvi d,l ;begin with first sector of next
inr c ;track=track+l

save
push
push
push
call
pop
pop
pop
jmp

register state, and change tracks
b
d
h
settrk ;track address set from register
h
d
b
loadl ;for another sector

; end of load operation, set parameters and go to c
gocpm:

;

• ,

• ,

mvi
sta
lxi
shld

sta
lxi
shld

lxi
call

ei
lda
mov
jmp

a,0c3h ;c3 is a jmp instruction
0 ; for jmp to wboot
h,wboote ;wboot entry point
l ;set address field for jmp at 0

5
h,bdos
6

;for jmp to bdos
;bdos entry point
;address field of jump at 5 to bd

b,80h ;default dma address is 80h
setdma

cdisk
c,a
ccp

228

;enable the interrupt system
;get current disk number
;send to the ccp
;go to cp/m for further processin

4bll
4b21 3e00
4b23 c9

4b24
4b34 e67f
4b36 c9

4b37 79
4b38
4b48 c9

4b49 79
4b4a c9

4b4b af
4b4c c9

4b4d 79
4b4e c9

4b4f 3ela
4b51 e67f
4b53 c9

4b54 0e00
4b56 cd7d4b
4b59 c9

4b5a 210000
4b5d 79
4b5e 32ef4c
4b6l fel4 '

1
1
1
1
1
;
const:

;
conin:

1
conout:

;
list:

• ,

si1nple i/o h,ndlers (must be filled in by user)
in each case, the entry point is provided, withs
to insert your own code

,console status, return 0ffh if character ready,
ds 10h 1space for status subroutine
mvi a,00h
ret

;console character into register a
ds 10h ;space for input routine
ani 7fh ;strip parity bit
ret

;console
mov
ds
ret

character output from register c
a,c ;get to accumulator
10h ;space for output routine

;list character from register c
mov a,c ;character to register a
ret ;null subroutine

listst: ;return list status (0 if not ready, l if ready)
xra a ;0 is always ok to return
ret

;
punch: :punch character from register c

;
;
reader:

;
;
1
home:
;

;

mov a,c ;character to register a
ret ;null subroutine

;read
mvi
ani
ret

character into register a from reader devic
a,lah ;enter end of file for now (repla
7fh ;remember to strip parity bit

i/o drivers for the disk follow
for now, we will sim~ly store the parameters away
in the read and write subroutines

;move to the track 00 position of current drive
translate this call into a settrk call with param
mvi c,0 ;select track 0
call settrk
ret :we will move to 00 on first read

seldsk: ;select disk given by register c
lxi h,0000h ;error •return code
mov a,c
sta diskno
cpi 4 ;must be between 0 and 3

229

4b63 d0

4b64

4b6e 3aef4c
4b71 6f
4b72 2600
4b74 29
4b75 29
4b76 29
4b77 29
4b78 11334a
4b7b 19
4b7c c9

4b7d 79
4b7e 32e94c
4b8l
4b91 c9

4b92 79
4b93 32eb4c
4b96
4ba6 c9

4ba7
4ba8
4ba9
4baa
4bac

eb
09
6e
2600
c9

4bad 69
4bae 60
4baf 22ed4c
4bb2
4bc2 c9

4bc3
4bd3 c3e64b

4bd6

• ,

. ,

. ,
settrk:

• ,
setsec:

1
sectran:

.
I

rnc
disk number is
ds 10
compute proper
lda diskno

;no carry if 4,5, •••
in the proper range
;space for disk select

disk parameter header address

mov l,a ;l=disk number 0,1,2,3
mvi h,0 :high order zero
dad h ;*2
dad h :*4
dad h : *8
dad h ;*16 (size of each header)
lxi d,dpbase
dad d ;hl=.dpbase(diskno*l6)
ret

:set
mov
sta
ds
ret

:set
mov
sta
ds
ret

track given by register c
a,c
track
10h ;space for track select

sector given by register c
a,c
sector
10h 7space for sector select

; translate
; translate
xchg

the sector given by be using the
table given by de

;hl=.trans
;hl•.trans(sector) dad b

mov l,m ;l = trans(sector)
mvi h,0 ;hl• trans(sector)
ret ;with value in hl

setdma: : set
mov
mov
shld
ds
ret

dma address given by registers band c
l,c ;low order address
h,b ;high order address
dmaad ;save the address
10h ;space for setting the dma addres

1
read:
• ,
• ,

1

7perform read operation (usually this is similar
so we will allow space to set up read command, th
common code in write)
ds 10h ;set up read command
jmp waitio ;to perform the actual i/o

write: ;perform a write operation
ds 10h ;set up write commanu

;
waitio: :enter here from read and write to perform the ac
1 operation. return a 00h in register a if the ope
; properly, and 01h if an error occurs during the r

230

• I , in this case, we have saved the disk number in 'd
1 the track number in 'track' (8-76
; the sector number in 'sector' u--
1 the dma address in 'dmaad' (8-655

4be6 ds 256 ,space reserved for i/o drivers
4ce6 3e01 mvi a,l ,error condition
4ce8 c9 ret :replaced when filled-in

• I

• the remainder of the cbios is reserved uninitiali I . data area, and does not need to be a part of the I . system memory image (the space must be available, , . however, between "begdat" and "enddat") • , . ,
4ce9 track: ds 2 1two bytes for expansion
4ceb sector: ds 2 ,two bytes for expansion
4ced dmaad: ds 2 1direct memory address
4cef diskno: ds 1 1disk number 0-15 . ,

• scratch ram area for bdos use ,
4cf0 = begdat equ $;beginning of data area
4cf0 dirbf: ds 128 ;scratch directory area
4d70 al 100: ds 31 ;allocation vector 0
4d8f all01: ds 31 ,allocation vector 1
4dae al 102: ds 31 ,allocation vector 2
4dcd all03: ds 31 ,allocation vector 3
4dec chk00: ds 16 ;check vector 0
4dfc chk01: ds 16 1check vector 1
4e0c chk02: ds 16 ;check vector 2
4elc chk03: ds 16 1check vector 3 . ,
4e2c = enddat egu $:end of data area
013c = datsiz equ $-begdat:size of data area
4e2c end

231

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

0100

0014 =

0000 =
3400 =
3c00 =
4a00 =

0100 318033
0103 218033
0106 0600

0108 0e01

010a cd0003
010d 118000
0110 19
0111 0c
0112 79
0113 felb
0115 da0a01

0118 04
0119 78
011a fe02
011c da0801

0llf fb
0120 76

.
I

msize

combined getsys and putsys programs from Sec 4.
Start the programs at the base of the TPA

org

egu

0100h

20 1 size of cp/m in Kbytes

1 kbias• is the amount to add to addresses for> 20k
7 (referred to as "b• throughout the text)

bias
ccp
b$ios
bios

. ,
• I

• I

• ,
• I

• I

• , .
I

• I

gs tart:

rd$trk:

rd$sec:

equ
equ
equ
equ

(msize-20)*1024
3400h+bias
ccp+0800h
ccp+l600h

getsys programs tracks 0 and 1 to memory at
3880h + bias

register usage
a (scratch register)
b track count (8 ••• 76)
C sector count (1 ••• 26)
d,e (scratch register pair)
h,l load address
sp set to stack address

• start of getsys I

lxi sp,ccp-0080h • conv~nient plac ,
lxi h,ccp-0080h • set initial loa I

mvi b,0 • start with trac I

• .read next track I

mvi c,l • each track star I

call read$sec • get the next se I

lxi d,128 • offset by ones I

dad d • (hl•hl+l28) I

inr C • next se.ctor . I

mov a,c • fetch se'ctor nu I

cpi 27 • and ·see if la I

jc rdsec • <, do one more I

1 arrive here at end of track, move to next track

inr b • track= track+l I

mov a,b . check for last I

cpi 2 • track = 2 ? ,
jc rd$trk 1 <, do another

. arrive here at end of load, halt for lack of anything b I

ei
hlt

232

0200

0200 318033
0203 218033
0206 0600

0208 0e01

020a cd0004
020d 118000
0210 19
0211 0c
0212 79
0213 felb
0215 da0a02

0218 04
0219 78
021a fe02
821c da0802

021f fb
0220 76

0300

0300 cs
0301 es

8302

8342 el
0343 cl

1 putsys program, places memory image starting at
J 3880h + bias back to tracks 0 and 1
J start this program at the next page boundary

org ($+0100h) and 0ff00h

put$sys:
lxi sp,ccp-0080h . convenient plac I

lxi h,ccp-0080h • start of dump I

mvi b,0 . start with trac ,
wr$trk:

mvi c,l . start with sect ,
wr$sec:

call write$sec • write one secto ,
lxi d,128 . length of each ,
dad d . <hl>=<hl> + 128 I

inr C • <c> = <c> + l ,
mov a,c • see if ,
cpi 27 • past end oft ,
jc wr$sec • no, do another ,

• arrive here at end of track, move to next track ,

inr b • track= track+l ,
mov a,b • see if I

cpi 2 • last track I

jc wr$trk • no, do another ,

• done with putsys, halt for lack of anything bette I

ei
hlt

J user supplied subroutines for sector read and write

J move to next page boundary

org ($+0100h) and 0ff00h

read$sec:
J read the next sector
J track in ,
J sector in <c>
J dmaaddr in <hl>

push
push

b
h

J user defined read operation goes here
ds 64

pop
pop

h
b

233

0344 c9 ret

8401 org ($+1101h) and 0f£81h • another page bo I

write$sec:

; same parameters as read$sec

0400 cs push b
0401 es push h

. user defined write operation goes here I

0402 ds 64

0442 el pop h
0443 cl pop b
0444 c9 ret

. end of getsys/putsys program I

0445 end

234

0000

0014 =

0000 =
3400 =
4a00 =
0300 =
4a00 =
1900 =
0032 •

0000 010200
0003 1632
0005 210034

APPENDIX E: A SKELETAL COLD START LOADER

: this is a sample cold start loader which. when modified
; resides on track 00, sector 01 (the first sector on the
: diskette). we assume that the controller has loaded
: this sector into memory upon system start-up (this pro
: gram can be keyed-in, or can exist in read/only memory
1 beyond the .address space of the cp/m version you are
: running). the cold start loader brings the cp/m system
: into memory at "loadph (3400h + hbiash). in a 20k
: memory system, the value of "bias" is 0000h, with large
: values for increased memory sizes (see section 2). afte
; loading the cp/m system, the clod start loader branches
: to the "boot" entry point of the bios, which begins at
: "bios" + "bias." the cold start loader is not used un
: til the system is ~owered u~ again, as long as the bios
: is not overwritten. the origin is assumed at 0000h, an
: must be changed if the controller brings the cold start
1 loader into another area, or if a read/only memory area
1 is used.

org 0 • base of ram in cp/m ,

msize equ 20 • min mem size in kbytes ,

bias egu (msize-20) *UJ24 . offset from 20k system ,
ccp equ 3400h+bias . base of the ccp ,
bios equ ccp+l600h . base of the bios ,
biosl equ 0300h • length of the bios I

boot egu bios
size equ bios+biosl-ccp . size of cp/m system ,
sects equ size/128 • t of sectors to load I

. begin the load operation I

cold:
lxi b,2 • b=0, c=sector 2 I

mvi d,sects . d=t sectors to load ,
lxi h,ccp • base transfer address I

lsect: • load the next sector I

1 insert inline code at this point to
1 read one 128 byte sector from the
: track given in register b, sector
: given in register c,
; into the address given by <hl>

; branch to location "cold" if a read error occurs

235

8118 c36b88
lllb

I
I , , ,

* * user supplied read 09eration goes here •••
*

jmp
ds

past$patch
60h

1 remove this when patche

past$patch:
1 go to next sector if load is incomplete

816b 15 dcr d 1 sects•sects-1
006c ca004a jz boot , head for·the bios

086f 318088
0872 39

8873 0c
8874 79
0075 felb
8077 da0808

017a 0e01
087c 84
017d c38888
0088

1 more sectors to load
1
1 we· aren't using a stack, so use <sp~ as scratch registe
; to hold the load address increment

lxi
dad

inr
mov
cpi
jc

sp,128
sp

C
a,c
27
lsect

1 128 bytes per sector
1 <hl> • <hl> + 128

; sector• sector+ 1

; last sector of track?
; no, go read another

; end of track, increment to next track

mvi
inr
jmp
end

c,1
b
lsect

236

; sector• 1
; track= track+ 1
; for another group
; of boot loader

l: ' 2: ' 3 ' 4 J.
s J
6 ' 7 • ,
8 • ,
9 • ,

10. • ,
11: J
12: J
13: ' 14: • I

15: • ,
16: • ,
17: J
18: ' 19 J
20 • ,
21 • ,
22 • ,
23 • I

24 • I

25 • ,
26: • I

27: • ,
28: • ,
29: • ,
38: • ,
31: • ,
32: • ,
33: • ,
34: • ,
35 J
36 1
37 1
38 • ,
39 J
48 • ,
41. • ,
42: • I

43: • I

44: • ,
45: • ,
46: ' 47: . ,
48: 1
49: J
58: J
Sl: ' 52: 1
53: J

APPENDIX F: CP/M DISK DEFINITION LIBRARY

CP/M 2.0 disk re-definition library

Copyright (C) 1979
Digital Rabearch
Box 579
Pacific Grove, CA
93950

CP/M logic~l disk drives are defined using the
macros given below, where the sequence of calls
is:

disks n
diskdef oarameter-list-8
diskdef ~arameter-list-1
• • •
diskdef parameter-list-n
endef

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the 1th drive (i•i,l, ••• ,n-1)

each parameter-list-i takes the form

where
dn
fsc
lsc
skf
bls
dks
dir
cks
ofs
(0)

dn,foc,lsc,[skf),bls,dks,dir,cks,ofs,(IJ

is the disk number 8,1, ••• ,n-l
is t,1e first sector number (usually 0 or 1)
is the last sector number on a track
is o~tional Mskew factor~ for sector translate
is tne data block size (1824,2048, ••• ,16384)
is tn~ disk size in bls increments (word)
is tn€ number of directory elements (word)
is the number of dir elements to checksum
is the number of tracks to skip (word)
is an optional 8 which forces 16K/directory en

for convenience, the form
dn,dm

defines disk dn as having the same characteristics as
a previously defined disk dm.

a standard four
disks
diskdef

dsk set
rept

dsk set
diskdef
endm
endei

drive CP/M system is defined by
4
0,l,26,6,1824,243,64,64,2

" 3
dsk+l
ldsk,8

the value of ·begdatM at the end of assembly defines t

237

54: ;
55: ;
56: ;
57: ;
58: :
59: ;
60: ;
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
7,1:
12:
73:

;
dskhdr . . , ,
dpe&dn:

• ,
disks . . , ,
ndisks
dpbase

74: 11
75: dsknxt

.76:
77:
78: dsknxt
79:
80:
81: 1
82: dpbhdr
83: dpb&dn
84:
85: ;
86: ddb
87: ::
88:
89:
98: ;
91: ddw
92: 1:
93:
94:
95: ;
96: gcd
97: ::
98: 11
99: ; ;

100: gcdm
UH: gcdn
102: gcdr
103:
104: gcdx
1'15: gcdr
106:
1'17:
108:

beginning of the uninitialize ram area above the bios,
while the valve of -enddatM defines the next location
following the end of the data area. the size of this
area is given by the value of -datsiz- at the end oft
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small blo
size.

dn macro
define
dw

a single disk header list
xlt&dn,0000h ;translate table

dw 0000h,~000h :scratch area
dw
dw
endm

dirbuf,dpb&dn ;dir buff,parm olock
csv&dn,alv&dn ;check, alloc vectors

macro nd
define nd disks
set nd ;;for later reference
equ $
generate the

;base of disk parameter blocks
nd elements

set kt
rept nd
dskhdr ldsknxt
set dsknxc+l
endm
endm

macro
equ
endm

dn
$

macro data,comment
define a db statement
db data
endm

macro
define
dw
endm

data,comment
a dw statement
data

macro m,n

;disk parm block

comment

comment

greatest common divisor of m,n
produces value gcdn as result
(used in sector translate table generation)
set m ;;variable form
set n 1:variable for n
set 0 :,variable for r
rept 65535
set qcdm/gcdn
set gcdm - gcdx*gcdn
if gcdr • 0
exitm
endif

238

109:
110:
111:
112:
113:
114:

gcdm
gcdn

J
diskdef

· 115: : :
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154: ; ;
155:
156:
157:
158: ; ;
159:
160:
161:
162:
163:

11
dpb&dn
ais&dn
css&dn
xlt&dn

secmax
sectors
als&dn

als&dn

css&dn ...
I I

blkval
blkshf
blkmsk

• • I I

blkshf
blkmsk
blkval

. .
I I

blkval
extmsk

; ;
extmsk
Dlkval

extmsk

extmsk

n
dirrem

set
set
endm
endm

gcdn
gcdr

macro dn,fsc,lsc,skf,bls,dks~dir,cks,bfs,kl6
generate the set ~tatements for later tables
if · nul lsc
current disk dn
equ dpb&fsc
equ als&fsc
equ css&fsc
equ xlt&fsc

s~me as previous fsc
:eguivalent parameters
;same allocation vector size
:same checksum vector size
;same translate table

else
set
set
set

lsc-(fsc) 1:sectors e ••• secmax

if
set
endif

secmax+l::number of sectors
(dks)/8 ;:size of allocation vector
((dks) mod b) ne 0
als&dn+l

set (cks)/4 1:number of checksum elements
generate the block shift value
set bls/128 :;number of sectors/block
set 0 ;:counts right 0's in blkval
set 0 ;:£ills with l's from right
rept 16 ::~nee for each bit position
if blkval=l
exitm
endif
otherwise, high order l not found yet
set blkshf+l
set (blkmsk shl 1) or 1
set blkval/2
endm
generate the extent mask byte
set bls/1024 ;;number of kilobytes/block
set 0 ;;fill from right with l's
rept 16
if blkval=l
exitm
endif
otherwise more to shift
set (extmsk shl 1) or 1
set blkval/2
endm
may be
if
set
endif
may be
if
set
endif

double byte ,!location
(dks) > 256
(extmsk shr 1)

optional [0] in last position
not nul kl6
kl6

now generate directory reservation bit vector
::f remaining to process set dir

239

164:
165:
166:
167:
168:
169:
170: ::
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
l~l:
182:
183:
184:
185:
186:
187:
18B:
189:
190: 11
191:
192:
193:
194:
1~5:
196:
197:
198:
199:
200:
201:
202

dirbks
dirblk

•• I I

dirblk

dirrem

dirrem

xlt&dn

xlt&dn

•• I I

nxtsec
nxtbas

n
neltst

283
204
285
206
287
208
209
211
211
212:
213:
214:
215:
216:
217:
21th

..
I I

• • I I

nelts
xlt&dn

nxtsec

nxtsec

nelts

set
set
rept
if
exitm
endif

bls/32
0
16
dirrem•0

11number of entries per block
1:fill with l's on each loop

not complete, iterate once again
shift right and add l high order bit
set (dirblk shr i) or 8000h
if dirrem > dirbks
set dirrem-dirbks
else ·
set 0
endif
endm
dpbhdr dn 11ge~erate equ $
ddw %sectors,<1sec per track>
ddb %blkshf,<7block·shift>
ddb lblkmsk,<:block mask>
ddb lextmsk,<1e~tnt mask>
ddw l(dks)-l,<1aisk size-1>
ddw i(dir)-l,<1airectory max>
ddb ldirblk shr 8,<:alloc0>
ddb ldirblk ana 0ffh,<1allocl>
ddw l(cks)/4,<1check size>
ddw iofs,<1offset>
generate the translate table, if requested
if nul skf
equ 8
else
if
equ
else

skf • 0
0

:no xlate taole

1no xlate table

generate the translate table
set a 11,1ext sector to fill
set 0 1:mcves by one on overflow
gcd lsectors,skf
gcdn • gcd(sectors,skew)
set sectors/gcdn
neltst ·ts number of elements to generate
before we overlap orevious elements
set neltst ,,~ounter
equ $:translate table
rept sectors :1once for each sector
if sectors< 256
ddb lnxtsec+(fsc)
else
ddw
endif
set
if
set
ehdif
set
if

lnxtsec+ (f sc)

nxtsec+ (skf)
nxtser >• sectors
nxtsec-sectors

nelts-1
nelts • 0

240

219: nxtbas set nxtbas+i
220: nxtsec set nxtbas
221: nelts set neltst
222: endif
223: endm
224: endif : :end of nul fac test

-225: endif ::end of nul bls test
226: endm
227: • ,
228: defds macro lab,space
229: lab: ds space
230: endm
231: • I

232: lds macro lb,dn,val
233: defds lb&dn,%val&dn
234: endm
235: • I

236: endef macro
237: • • I I generate the nec~ssary ram data areas
238: begdat equ $
239: dirbuf: ds 128 :directory access buffer
240: dsknxt set 0
241: rept ndisks : :once for eacn disk
242: las alv,ldsknxt,als
243: lds csv,%dsknxt,css
244: dsknxt set dsknxt+l
245: endm
246: enddat egu $
247: datsiz egu $-begdat
248: • • db 0 at this point forces hex record I I

249: endm

241

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS.

1: ;***
2: ; *
3: ;*
4: ;*

sector Deblocking Algorithms for CP/M 2.0
*
*
*

5: ;***
6: ;
7: ;

smask 8:

. .
I I .

@y
@x

. .
I I

@y
@x

.
I

utility macro to compute sector mask
macro hblk
compute log2(hblk), return @x as result
(2 ** @x = hblk on return)
set hblk
set 0
count right shifts of @y until= 1
rept 8
if @y = 1
exitm
endif
@y is
set
set
endm
endm

not 1, shift right one position
@y shr 1
@x + 1

·***

9: ; ;
10:
11:
12:
13: ; ;
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53: ;

I

• * I

•* I

*
CP/M to host disk constants *

·* * I -

·*** I

blksiz
hstsiz
hstspt
hstblk
cpmspt
secmsk

secshf

equ
equ
equ
equ
equ
equ
smask
equ

2048
512
20
hstsiz/128
hstblk * hstspt
hstblk-1
hstblk
@x

;CP/M allocation size
;host disk sector size
;host disk sectors/trk
;CP/M sects/host buff
;CP/M sectors/track
;sector mask
;compute sector mask
;log2(hstblk)

;
•*** I

•* * I

;* BOOS constants on entry to write *
•* * I

·*** I

wrall
wrdir
wrual .
I

equ
equ
equ

0
1
2

;write to allocated
;write to directory
;write to unallocated

;***
;* *
;* The BOOS entry points given below show the *
;* code which is relevant to deblocking only. *
·* * I

;***

242

54: 1
55: dpbase
56: ;
57: boot:
58: wboot:
59:

.
' seldsk:

DISKOEF macro, or hand coded tables go here
equ $ rdisk param block base

:enter
xra
sta
sta
ret

here on system
a
hstact
unacnt

:select disk

boot to initialize
:0 to accumulator
:host buffer inactive
:clear unalloc count

60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

mov a,c :selected disk number
:seek disk number
:disk number to HL

.
' settrk:

. ,
setsec:

1
setdma:

;
sectran:

100:
101:
102:
103: ;

sta sekdsk
mov l,a
mvi h,0
rept 4
dad n
endm
lxi
dad
ret

;set
mov
mov
shld
ret

d,dpbase
d

track given
h,b
1,c
sektrk

,multiply by 16

;base of parm block
1hl=.dpb(curdsk)

by registers BC

:track to seek

;set
mov
sta
ret

sector given by register c

:set
mov
mov
shld
ret

a,c
seksec

dma address
h,b
l,c
dmaadr

;sector to seek

given by BC

,translate sector number BC
mov h,b
mov l,c
ret

243

•• , 104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133: 1
134: 1
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149: :
150: ;
151:
152:
153:
154:
155:
156:
157: ;
158: ;

·* * ,
•* ,
•* ,

The READ entry point takes the place of
the previous BIOS defintion for READ.

*
*

·* * ,
•*******••·· ,
read:

.
I

:read
mvi
sta
sta
mvi
sta
jmp

the selected
a,l
readop
rsflag
a,wrual
wrtype
rwoper

CP/M sector

;read operation
;must read data

;treat as unalloc
;to perform the read

•*** ,
•* * I

·* ,
·* I

. * I

The WRITE entry point takes the place of
the previous BIOS defintion for WRITE.

*
*
*

·*** I

write:

• I

chkuna:

;write the selected CP/M sector
xra a
sta readop
mov
sta
cpi
jnz

write
mvi
sta
lda
sta
lhld
shld
lda
sta

a,c
wrtype
wrual
chkuna

to unallocated,
a,blksiz/128
unacnt
sekdsk
unadsk
sektrk
unatrk
seksec
unasec

;0 to accumulator
;not a read operation
;write type inc

;write unallocated?
;check for unalloc

set parameters
1next unalloc recs

;disk to seek
;unadsk = sekdsk

;unatrk = sectrk

;unasec = seksec

;check for write to unallocated sector
lda unacnt ;any unalloc remain?
ora
jz

more
dcr
sta
lda
lxi
cmp
jnz

a
alloc ;skip if not

unallocated records remain
a
unacnt
sekdsk
h,unadsk
m
alloc

;unacnt = unacnt-1

;same disk?

;sekdsk = unadsk?
;skip if not

disks are the same

244

:
noovf:

:
alloc:

lxi h,unatrk
call sektrkcmp
jnz alloc

tracks are the same
lda seksec
lxi h,unasec
cmp m
jnz alloc

match, move to next
inr m
mov
cpi
jc

a,m
cpmspt
noovf

isektrk • unatrk?
rskip if not

rsame sector?

;seksec ~ unasec?
;skip if not

sector for future ref
:unasec = unasec+l
;end of track?
;count CP/M sectors
;skip if no overflow

overflow to next track
mvi m,0
lhld unatrk
inx h
shld unatrk

:match
xra
sta
jmp

found, mark
a
rs flag
rwoper

;not an unallocated
xra a
sta unacnt
inr
sta

a
rsflag

:unasec = 0

;unatrk = unatrk+l

as unnecessary read
:0 to accumulator
; rs flag = 0
;to perform the write

record, requires
:0 to accum
:unacnt = 0
:1 to accum
;rsflag = 1

pre-read

159:
1681
161:
162: r
163: r
164:
165:
166:
167:
168: r
169: 1
170:
171:
172:
173:
174: 1
175: 1
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209: ;
210: ;
211:
212:
213:

:
•*** ,
·* * ,
•• , common code for READ and WRITE follows *
·* * ,
·*** ,
rwoper:

:enter
xra
sta
lda
rept
ora
rar
endm
sta

here to perform
a
er flag
seksec
secshf
a

sekhst.

active host sector?
lxi h,hstact
mov

' mvi
a,m
m,l

245

the read/write
:zero to accum
;no errors (yet)
;compute host sector

:carry• 0
;shift right

:host sector to seek

;host active flag

ralways becomes 1

214:
215:
216: ;
217: ;
218:
219:
220:
221:
222: ;
223: ;
224:
225:
226:
227: ;
228: ;
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263: ;
264:
265:
266:
267:
268:

. ,
nomatch:

. ,
f ilhst:

;
match:

ora
jz

a
filhst

;was it already?
;fill host if not

host
lda
lxi
cmp
jnz

buffer active, same as seek buffer?

same
lxi
call
jnz

sekdsk
h,hstdsk
m
nomatch

disk, same track?
h,hsttrk
sektrkcmp
nomatch

;same disk?
;sekdsk = hstdsk?

;sektrk = hsttrk?

same disk, same track, same buffer?
lda sekhst
lxi h,hstsec ;sekhst = hstsec?
cmp
jz

m
match ;skip if match

;proper disk, but not correct sector
lda hstwrt ;host written?
ora
cnz

;may
lda
sta
lhld
shld
lda
sta
lda
ora
cnz
xra
sta

a
writehst

have to fill
sekdsk
hstdsk
sektrk
hsttrk
sekhst
hstsec
rsflag
a
readhst
a
hstwrt

;copy
lda
ani
mov

data to or
seksec
secmsk
l,a
h,0
7
h

;clear host buff

the host buffer

;need to read?

;yes, if l
;0 to accum
;no pending write

from buffer
;mask buffer number
;least signif bits
;ready to shift
;double count
;shift left 7

mvi
rept
dad
endm
hl has
lxi
dad
xchg
lhld

relative host buffer address

mvi

d,hstbuf
d

dmaadr
c,128

;hl =- host address
;now in DE
;get/put CP/M data
;length of move

• ,
• ,

• ,
rwmove:

lda readop ,which way?
ora a
jnz rwmove 1skip if read

write operation, mark and switch direction
mvi a,l
sta hstwrt ;hstwrt • 1
xchg ;source/dest swap

;C initially 128, DE is source, BL is dest
ldax d ,source character
inx d
mov
inx
dcr
jnz

data
lda
cpi
lda
rnz

m,a
h
C
rwmove

has been moved
wrtype
wrdir
erflag

1to dest

1loop 128 times

to/from host buffer
1write type
;to directory?
1in case·of errors
;no further processing

clear host buffer for directory write
ora
rnz
xra
sta
call
lda
ret

a

a
hstwrt
writehst
erflag

;errors?
;skip if so
10 to accum
1buffer written

269:.
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
2~4:
285:
286: 1
287: ;
288:
289:
290:
291:
292: ;
293: ;
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314: ;
315:
316:
317:
318:
319:
320: 1

;
;***
·* * ,
•* I Utility subroutine for 16-bit compare *
·* * ,
·*** I

sektrkcmp:
1HL = .unatrk or .hsttrk, compare with sektrk
xchg
lxi
ldax
cmp
rnz

h,sektrk
d
m

1low byte compare
1same?

low bytes equal, test
1return if not

high ls
inx d
inx h
ldax d
cmp
ret

m ,sets flags

247

321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:.
333:
334:
335:
336:
337:
338:
339:

•*** ,
·* * ,
·* ,
·* ,
·* ,
•* ,

WRITEHST performs the physical write to
the host disk, READHST reads the physical
disk.

*
*
*

•*** ,
writehst:

;
readhst:

;hstdsk = host disk i, hsttrk = host track#,
;hstsec = host sect#. write "hstsizu bytes
;from hstbuf and return error flag in erflag.
1return erflag non-zero if error
ret

;hstdsk = host disk i, hsttrk = host track t,
;hstsec = host sect i. read "hstsiz" bytes
1into hstbuf and return error flag in erflag.
ret

340: J
341: ;***
342: ;* *
343: ;* Unitialized RAM data areas *
344: ;* *
345: ;*************************************A•**************
346: J
347: sekdsk:
348: sektrk:
349: seksec:
350: ;
351: hstdsk:
352: hsttrk:
353: hstsec:
354: 1
355: sekhst:
356: hstact:
357: hstwrt:
358: .. ;
359: unacnt:
360: unadsk:
361: unatrk:
362: unasec:
363: 1
364: erflag:
3 6 5 : rs fl ag :
366: readop:
367: w:type:
3 6 8: dma ad r :
369: hstbuf:
370: ;

ds
ds
ds

ds
ds
ds

ds
ds
ds

ds
ds
ds
ds

ds
ds
ds
ds
ds
ds

1
2
1

1
2
1

1
1
1

1
1
2
1

1
1
1
1
2
hstsiz

1seek disk number
;seek track number
;seek sector number

;host disk number
;host track number
;host sector number

;seek shr secshf
;host active flag
;host written flag

;unalloc rec cnt
;last unalloc disk
ilast unalloc track
;last unalloc sector

;error reporting
;read sector flag
;l if read operation
;write operation type
;last dma address
;host buffer

248

EXIDY SYSTEMS' CBIOS USERS GUID8

VERSION 1. 0
FOR

CP/M 2.2

COPYRIGHT (C) 1981

EXIDY SYSTEMS, INC.

AUGUST 1981

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

EXIDY SYSTEMS' CBIOS USERS GUIDE

VERSION 1. 0
FOR

CP/M 2. 2

COPYRIGHT (C) 1981

EXIDY SYSTEMS, INC.

AUGUST 1981

COPYRIGHT

Copyright {c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

Table Of Contents

Exidy Systems' CBIOS User's Guide:
Version 1.0 For CP/M 2.2

1. lntroduction ••••••••••••••••••••••••••••• 249
2. Configuration and System Generation •••••• 251

A. Hardwar.e for the DDS and the FDS ••••• 251
B. System Generation••••••••••••••••••••252
C. Options••••••••••••••••••••••••••••••253
D. lnc<>n1>atibi lities •••••••••••••••••••• 254
E. Sector Skew Pattern •••••••••••••••••• 254
F. Special Video Display lnterface •••••• 255

3. Features•••••••••••••••••••••••••••••••••256
A. Error Recovery ••••••••••••••••••••••• 256
B. CP/M Programning•••••••••••••••••••••257

4. Error Messages•••••••••••••••••••••••••••259

1. INTRODUCTION

The CBIOS program provides the interface between CP/M
(TM) and the Sorcerer's hardware. The term BIOS was coined by
Digital Research, the creators of CP/M. Their term CBIOS stands
for Customized Basic Input/Output System, in which the BIOS is
customized to the user's hardware. The Exidy program is a CBIOS
in this sense.

Portability is the most valuable attribute of CP/M. The
clean separation of logical and physical I/0 enables it,to run
on many 8080/Z80 based systems. Digital Research provides the
logical I/0 in CP/M's Basic Disk Operating System (BDOS). This
routes all physical I/0 through a-BIOS vector. See the "CP/M
System Alteration Guide" for a descrip~ion of the BIOS vector
and its functions.

Each hardware system CP/M is used on requires a separate
BIOS program. The Exidy interface is tailored for the Sorcerer
and the hardware the Sorcerer supports. Because the disk drive
is the most complicated piece of hardware CP/M uses, this
document focuses on the CBIOS disk interface for the Display
Disk System (DDS) double sided drives for soft-sectored 77
track diskettes and the Floppy Disk System (FDS) single sided
drives for soft-sectored 77 track diskettes.

For clarification, a brief explanation of physical and
logical units may benefit the user in our discussion. A
physical unit is the actual input/output device and its
hardware recording medium. A diskette, for example, physically
has 77 tracks, each of which has 16 sectors of 256-bytes.
However, an interface between the physical hardware and the
user may translate or break up this size into any number of
combinations. This level, used by the programmer, is the
logical level. That is, the very same diskette may be dealt
with by the programmer as a different size from the physical
size (say, 77 tracks each of which has 32 sectors of 128-bytes)
The software interface makes all necessary adjustments for the
input to be understood on the differing physical diskette size.

The Digital Re~earch interface of the BDOS to the BIOS
defines the logical CP/M diskette with a logical sector size of
128-bytes. The Exidy physical diskette systems, however, have
a 256-byte sector. To compensate for this difference, Exidy
splits each physical 256-byte sector in half to form two CP/M
logical 128-byte sectors. The CBIOS is responsible for mapping
128-byte logical CP/M sectors to the proper half of a 256-byte
physical sector. The physical sectors are skewed or inter
leaved on the diskette to minimize rotational delay. This
skewing pattern is described in detail later. ·

249

250

The disk buffer cache improves performance by buffering
reads and writes of the disk in a RAM cache storage area. When
CP/M requests a 128-byte sector read from a sector not within
the cache buffer, a 256-byte sector from disk must be read.
Thus, the cache returns the requested sector to the user,
keeping track of the other 128-byte sector half within the 256-
_byte cache buffer. Should a read request be made for that
sector at this point, no disk I/0 is required because the
sector already exists in the memory cache. This same principle
applies to cache buffer writing. That is, only one 256-byte
physical sector I/0 is written for two CP/M 128-byte logical
I/0 requests on the same physical sector.

251

2. CONFIGURATION AH.D SYSTEM GENERATION

A. Hardware for the DDS and the FDS

The Exidy CBIOS runs on both the Display Disk System
(DDS) and the Floppy Disk Subsystem (FDS). A DDS
consists of a Sorcerer II Computer (with keyboard),
Display Disk Unit containing a video screen, and two soft
sectored Micropolis drives. The Exidy CBIOS may actually
support three disk drives connected to the soft sectored
disk controller. However, a controller and only two
drives are supplied with the DDS. The DDS may be
augmented by other peripherals such as a printer,
cassettes, etc •• The Exidy CBIOS assigns the logical
CP/M devices, Punch and Reader, to serial write and
serial read respectively. The List device is assigned to
the Sorcerer Centronics parallel printer interface.

On cold boot, CP/M on the DDS outputs one of the
following messages:

CP/M on the Exidy Sorcerer for 77 Track Disk
77 Track Single Sided Disks
32K CP/M VERS 2.2/lF
Copyright (C) 1981 Exidy Systems, Inc.

A>

or

CP/M on the Exidy System 80
77 Track Double Sided Disks
32K CP/M VERS 2.2/2F
Copyright (c) 1981 Exidy Systems, Inc.

A>

The Exidy CBIOS also runs on the Floppy Disk System
(FDS). An FDS consists of a Sorcerer II Computer (with
keyboard), and a Floppy Disk Subsy~em containing an MPI
floppy disk drive and controller. The Exidy CBIOS may
actually support three disk drives connected to the soft
sectored disk controller. However, a controller and only
one drive are supplied with the standard Floppy Disk
Subsystem. The FDS may be augmented by other peripherals
such as printers, cassettes, etc •• The Exidy CBIOS
assigns the logical CP/M devices Punch and Reader, to
serial write and serial read respectively. The List
device is assigned to the Sorcerer Centronics parallel
printer interface.

version 2.2/lF CBIOS operates on the FDS and version
2.2/2F operates on the DDS.

252

B. System Generation

Two programs, MOVCPM and SYSGEN, either create a new
CP/M system or change its location in RAM. The MOVCPM
program obtains a CP/M system image sized appropriately,
for example, 32K, 48K, etc. and perfo~ms system reloca
tion. SYSGEN takes the system output from MOVCPM and
writes it to tracks 0 and 1 of the target diskette. The
simplest method of doing this is:

A> MOVCPM 32 * <carriage return>
MOVCPM PROGRAM VERSION 2.0
CONSTRUCTING 32K CP/M VERS 2.2
READY FOR •sysGEN· OR
•sAVE 40 CPM32.COM•
A>

Notice that •MOVCPM 32 •• is the only user input. At
this point MOVCPM has created a 32K CP/M system image in
memory and the user may either proceed immediately to
SYSGEN or he may save the image on disk as a COM file by
typing SAVE 40 CPM32.C0M <carriage return> in response to
the "A• prompt. The latter procedure provides the user
the option of modification with the DDT utility.

With a MOVCPM image in memory, as it is after the
last prompt, the user may do a memory image SYSGEN. In
the next example, the system is created on drive B. Note
the response to the source drive name prompt is a
carriage return. This indicates the source system
already exists in memory.

A>SYSGEN <carriage return>
SYSGEN VER 2.0

SOURCE DRIVE NAME (OR RETURN TO SKIP) <carriage return>
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)B
DESTINATION ON B, THEN TYPE RETURN <carriage return>

The actual disk writing occurs Aand when complete this
message signs on:

FUNCTION COMPLETE
DESTINATION DRIVE NAME (PR RETURN TO REBOOT)

At this point the system has been created on disk. The
user should do a cold boot (RESET) on the new diskette
(after placing it in drive A) to verify this. For
more details on MOVCPM and SYSGEN, see •An Introduction
to CP/M Features and Facilities.•

253

MOVCPM may also be performed without the second•~•
parameter MOVCPM 29. In this case, MOVCPM attempts to
create and execute in memory a new system of the
specified size. However, the system may be destroyed if
the given memory size causes the new target system to use
memory in either the executing MOVCPM program or the
executing CP/M system. Exidy suggests always specifying
the second ••• parameter for MOVCPM and using SYSGEN to
create a new disk system.

C. Options

Two options come with the CBIOS: Diagnostic Error
Messages and Read After Write Data verification. The
default settings are 1) no Diagnostic Error Messages and
2) Read After Write verification.

With the Diagnostic Error Message option turned off,
only fatal errors are reported to the user and recovered
soft errors are not. The user selects this option if he
wants all errors reported. A Diagnostic Error message
shows for any error encountered.

The Read After Write verification option allows all
data to be reread and compared to the write buffer and
CRC after the user has written to a physical disk sector.
The user may turn off this option, increasing the speed
of disk writes by 50 per cent. This may, however,
decrease data reliability. we suggest leaving this
option set to the default value to assure disk writes are
being done successfully.

Only someone familiar with CP/M programming should
attempt changing option values. To make these changes,
the user creates a disk file with his CP/M system on it.
That is, he does a MOVCPM, followed by a SAVE, as
described in Section 2.B of this manual. The user

then DDT's the CP/M system into memory, altering the
contents of absolute location 1F02 hex to reflect the
options he wishes, as shown below:

bit I= Read After Write Option (hex 01)
bit 2 = Diagnostic Error Message Option (hex 04)

If the value of
asserted. A bit
default value is
without Diagnostic

the bit is 1, then the option is
of 0 turns off the option. Thus the
01 hex for the Read After Write option
Error Messages •.

254

D. Incompatibilities

Some CP/M disk formats, including Exidy's, are
incompatible with other CP/M formats. All disk formats,
are incompatible with the Micropolis Disk Operating
system (MOOS). This incompatiblility,· especially evident
with"MDOS, is a result of different sector skewing
arrangements. All Exidy disk-based software products
only run on Exidy's CP/M(TM).

The Exidy skewing pattern for the FDS version
follows for those interested in developing translation
programs. The DDS version has a one-for-one sector
correspondence and therefore no skewing.

E. Sector Skew Pattern

CP/M logical
128-byte sector

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

255

Exidy 256-byte Sector
(Physical Sector,
first/last half)

16, first
16, last
13, first
13, last
10, first
10, last
7, first
7, last
4, first
4, last
1, first
1, last

14, first
14, last
11, first
11, last
8, first
8, last
S, first
s, last
2, first
2, last

15, first
15, last
12, first
12., last
9, first
9, last
6, first
6, last
3, first
3, last

Note that Exidy physical sectors are numbered 1 to 16,
and are 256 physical bytes long. CP/M logical sectors
are numbered 1-32 and are 128-bytes long. Thus, two CP/M
sectors fit in one Exidy physical sector.

F. Special Video Display Interface

The video display on the Sorcerer\ II is a
device which is not standard with any
market. CBIOS supports the following TTY
standardized full screen operations.

memory mapped
other on the
interface for

Form Feed

Clear Screen
Home Cursor

HEX
{0C}

(lA)
(lE)

Direct Cursor Addressing:

ESC •=• Row Column
(18) (3D) Row/1-29 + 31 (lF)

RESULT
Clear screen, home

.cursor
Same as above
Place cursor at row
0, col 0

Col/1-64 + 31(1F)

Using the above cursor addressing information the
following sequence will position the cursor at row 1, col
2:
ESC •=• 32(20) 33(21)

256

3. FEATURES

A. Error Recovery

The CBIOS includes extensive automatic error
detection, recovery, and reporting facilities. The Read
After Write option, active by default, is the only error
detection function controlled by the user. When a disk
I/0 error occurs, recovery is fully automatic in the
following steps:

1. CBIOS retries operation up to 5 times until
successful.

2. If the error ~till exists, it steps one track
in/out alternately for a total of 6 times and
repeats step 1 again.

3. If error still exists, then it deselects/rese
lects drive and then homes to track 0, up to 2
times, repeating 1 and 2. If error still
exists, the error is treated as •permanent•
and unrecoverable and the operation is aborted.

These error recovery steps are performed in nested
fashion. That is, a separate counter is maintained for
each error retry state, 1, 2, and 3. If step 1 fails,
(its counter reaching 5), then step 2 is performed and
its counter incremented. Meanwhile, the step 1 counter
is reset, and its process again performed. If successive
errors cause the step 2 counter to reach its maximum,
then step 3 is performed, and its counter incremented.
Both the first and second counters are reset, and step 1
is reinitiated. Thus a total of sixty (5x6x2) retry
steps are performed before the error is declared non
recoverable. This retry process can take up to 75
seconds.

If the error is non-recoverable, the CBIOS issues an
error ~esssage stating:

n ORV: ERR CODE= D

n here identifies the drive A, B, or C. Further
identification of the error code follows the message.

The CBIOS then returns the error to its caller, the CP/M
Basic Disk Operating System (BOOS). BDOS reports the
error to the user, in less descriptive terms than the
CBIOS in the following message:

BOOS ERR ON n: BAD SECTOR

257

The BOOS operation is suspended until the user hits
any key except control-C. When any other key is hit, the
BOOS retries the I/0. If the user wishes to end error
processing, he must hit control-C or reset to the
Sorcerer Monitor and perform either a warm boot (GO 0) or
a cold boot.

If the user chooses the Diagnostic Error Message
option, each error issues an I/0 error message even if
recovered by the CBIOS. In the event of a nonrecoverable
error, the CBIOS prints 60 diagnostic error messages
before declaring the error nonrecoverable and issuing the
above error message. This procedure slows down recovery
considerably. Only technicians diagnosing disk-related
hardware errors should use this option.

one peculiar •error• of CP/M systems is the write
protect error. The CBIOS shows this error message to the
user:

n ORV: ERR CODE=B

However, the CBIOS doesn't report the error to the BOOS.
Thus the BOOS thinks it is writing to a disk, but cannot
because it is a write protected disk. The BOOS discovers
the error only after it reads back the directory data and
it does not agree with what it remembered having
•written•. This usually results in the following error
message:

BOOS ERR ON n: R/0

The write protect error occurs when CP/M performs •token•
directory writes upon reading each new extent of a file.
Thus if a PIP {Peripheral Interchange Program) is
performed on a large {>16K) file from a write protected
diskette to a writable diskette, the token directory
writes cause write protect errors on the write protected
source diskette. If the CBIOS returned the write protect
error to the BOOS, the user could never copy files from a
write protected diskette (even though only reads are to
be done). These write protect errors on a diskette used
only for input can be ignored as a peculiarity in CP/M.

B. CP/M Programming

Cache BIOS does not immediately, upon user request,
execute disk writes. At any given moment there may be

•dirty• buffers in the cache, that is, buffers which
should be written to disk. Writing such buffers to disk
is called •flushing the cache•. The typical user who
interfaces to the CBIOS through the BOOS, that is, does

258

logical file I/0, documented in the •interface Guide•,
does not need to be aware of the flushing mechanism. The
cache is automatically flushed upon BOOS file closing.
Only the user who performs direct CBIOS I/0 through the
vector needs to be aware of cache flushing. The cache is
flushed when:

1. Console output
2. A write to the directory track occurs
3. A CBIOS disk select occurs
4. Warm Boot

Programmers using the non-standard CBIOS I/0 functions
and not the standard BOOS ones should be careful and
account for caching processes.

• The best guide to CP/M programming is Digital
Research's •cp/M Interface Guide.• Although the guide is
accurate and informative, additional information may
help the user overcom~ any problems he may encounter, as
listed below.

1. The BOOS search commands (function numbers 17
and 18) do not work as indicated in the •cP/M
Interface Guide•. The following provides accurate
information

a. The Search command (17) does not return
a byte pointer. Instead, it returns the index of
the found file (within the directory) to register A,
or to 255 if a match·is not found. The index of the
file is within the range of 0 to 127, since the
Exidy CP/M contains up to 128 directory entries.
Directory entries are 32 bytes per entry, thus there
are four entries per sector. The BOOS, searching
for the desired file, reads directory sectors into
its OMA buffer, located from 88 to FF hex. These
facts provide· the basis for the following formula.
The File Control Block (FCB) for the found file is
located at:

80H + MOD(index,4)*32

The BOOS returns
function which
divided by 4.

•index• and
returns the

MOD is the modulus
remainder of •index•

b. Only after the initial search (17), may
search (18) occur. The Interface Guide incorrectly
states that an FCB parameter is required. Actually,
the FDB from the previous search call (17) is used.
The _parameter returns in the A register and is a
directory index exactly as described above in la.

2S9

4. ERROR MESSAGES

The following is the error message format with an
explanation of the various error codes:

x ORV: ERR CODE=c

where x represents the drive on which the error occurred
(A, B, or C) and c represents one of the following:

A - Disk Select Error- The disk selected was not drive
"A•, "B", or •c•.

B - Write Protect Error- The attempt to write to a write
protected diskette was not reported to the BOOS as an
error. See Section J.B., CP/M Programming.

C - Disk Track out of Range- A track number was detected
past the end of the disk, indicating that the CP/M is
very sick.

D - Non-Recoverable Disk I/0 Error- All retries have
failed to eliminate a read or write error. A more
complete description follows this section.

E - Insufficient Memory for Disk Cache Buffers- At
initialization, cache buffers are allocated. This error
occurs if there is not sufficient space for one cache
buffer.

F - Error on Cache
cache was flushed.
be redone.

Flush- An
The last

error occured while the
CP/M job or command should

A non-recoverable disk I/0 error (Code D) has a few
possible causes, which is one of the following:

(I/0 Type):TRK=ttH, SCTR=ssH: STAT=bbH *

Where I/0 Type is of the following:

READ ERR - Error occured during read operation

WRITE ERR - Error occured during write operation

RDAFTWR ERR - The read after write option was selected,
and the verify did not agree. The write however, was
done successfully.

Note that track and sector values (tt and ss) are
express~d in hexadecimal.

260

The status value (bb) is eight bits of status flags from
the disk controller, expressed in hexadecimal. Only the
status flags listed below are used for error indicators.

04H (bit 2) - Lost data (data overrun/underrun)

08H (bit 3) - CRC error

10H (bit 4) - Record Not Found (RNF)

20H (bit 5) - Write Fault for Write command

40H (bit 6) - Write Protect Flag

80H (bit 7) - Not Ready Flag

These codes show up in messages like this:

A ORV: ERR CODE= D

READ ERR: TRK=02, SIDE=00, SCTR=05: STAT=lfrJH

This message would tell the user that he has a non
recoverable disk I/0 error {ERR CODE= D) on the second
track of sector 5 on side 0, and its status, 10H refers
to bit 4, Record Not Found.

261

EXIDY EXCOPY USER'S GUIDE

VERSION 2.0

COPYRIGHT (C) 1980

EXIDY SYSTEMS, INC.

AUGUST 1981

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

EXIDY EXCOPY USER'S GUIDE

VERSION 2.0

COPYRIGHT (C) 1980

EXIDY SYSTEMS, INC.

AUGUST 1981

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

Table Of Contents

Exidy Systems' Excopy User's Guide: Version 2.0

1. lntroduction ••••••••••••••••••••••••••••• 262
2. ·use •••••••••••••••••••••••••••••••••••••• 263
3. Sar11>le Run•••••••••••••••••••••••••••••••264

A. Excopy With Two Multiple Drives •••••• 264
B. Excopy With One Drive •••••••••••••••• 264
C. Format OnlY••••••••••••••••••••••••••265

4. Error Messages•••••••••••••••••••••••••••266
A. Can Not Format, Try Again •••••••••••• 266
B. Destination Is Write Protected ••••••• 266
C. Write Error On Track #XX ••••••••••••• 267
D. Read Back Error On Track #XX ••••••••• 267
E. Additional Messages •••••••••••••••••• 267

5. Recovery ••••••••••••••••••••••••••••••••• 268

1. INTRODUCTION

EXCOPY (TM) is a CP/M (TM) program which formats or copies
formatted, soft-sectored diskettes on the Exidy Floppy Disk
Subsystem (FDS) and Display Disk System (DDS). The copying
operation automatically formats the destination diskette on
either a single or a multiple drive configuration. The copy
program minimizes the number of read/write cycles performed by
determining the amount of RAM available as a copy buffer, using
as much of it as possible. Disk formatting without copying may
also be performed by the program. The user must not violate
any software licensing agreements when copying diskettes.

262

2. USE

The practical user will want to secure back-up copies of
all his important files, protecting against any possibility of
losing data and enabling the user to read and write to the
disk. Also, the user may wish to format only, that is, create
on a new disk proper tracks and sectors to read and write to.

EXCOPY is called from CP/M by simply entering "EXCOPY" on
the CP/M command line. The program signs on and requests an
indic~tion of one of these responses: •c• (or carriage return)
for copy, "F" for format only, or "E" (or control-C) for exit
back to CP/M.

If copying is requested, the program asks if more than one
disk drive is configured and available for the copying opera
tion. The reponse "Y" or "N" indicates yes or no. If more than
one drive is indicated, a message instructs you to place the
source diskette in drive A and the destination diskette in
drive B. Copying automatically occurs after striking any key.

If only one drive is indicated, a message instructs y~u to
first insert the destination diskette in the A drive for
formatting. Hitting any key triggers this process. Then,
alternately place source and destination diskettes in the A
drive as requested by th• console messages.

WARNING: Copying and Formatting destroys any previous
information on the destination diskette. BE SURE THERE ARE NO
IMPORTANT FILES ON THE DESTINATION DISKETTE, AS THEY WILL BE
LOST. ALSO, PAY CAREFUL ATTENTION TO THE DRIVE YOU PLACE YOUR
SOURCE AND DESTINATION DISKETTE IN. Any mixup will lose all
information on your source diskette. Exidy suggests putting
write-protect tabs on your source diskette to guard against any
such mixup.

After copying, the console asks if more is desired. If
your response is •y• (yes), the cycle is repeated. Otherwise,
the program directs the operator to place a system diskette in
the A drive, hitting any key to re-boot the system.

Formatting without copying may also be requested. In this
case, the program asks the user to specify which drive he
wishes to format, "A", •B•, or •c•. After completion, the
program asks if more is desired, and repeats the cycle if •y•
is entered.

263

3. SAMPLE RUN:

A. EXCOPY With Multiple Drives

Here is a sample of the console I/O when using EXCOPY.
For clarification, user input is underlined to
differentiate from program output:

A>EXCOPY (return)

Exidy Disk Copy and Format Program
For 77 Track Single Sided diskettes. Ver 2.0
Copyright (C) 1981 Exidy Systems, Inc.

or

Exidy Disk Copy and Format Program
For 77 Track Double Sided diskettes. Ver 2.0
Copyright (C) 1981 Exidy Systems, Inc.

Format only, Copy, or Exit (F/C/E)? ••• c

Do you have more than one drive
configured in this system (Y/N)? Y

Put source diskette in drive A
and destination diskette in drive B then
Hit any key when ready. (any key)

(copying commences)

Good Copy.

More (Y/N)? N

Place system diskette in drive A and
Hit any key when ready to reboot. any key

(CP/M reboots)

B. EXCOPY with One Drive

:.;:.~'"1 CJ
'='~,~~f

: .• ue

, ..

The following is the console I/O when invoking EXCOPY
with only one drive configured on the Sorcerer. An
asterisk (*) indicates the point where the program waits
until any key is hit. Track numbers indicated will vary
depending on size of RAM. In this example, RAM is 32K.
Once again, be sure to begin by placing the DESTINATION
diskette in the drive. Should you confuse it with the
source diskette, all information will be permanently lost.

264

A>EXCOPY (return)

Exidy Disk Copy and Format Program
For 77 Track Single Sided diskettes. Ver 2.0
Copyright (C) 1981 Exidy Systems, Inc.

or

Exidy Disk Copy and Format Program
For 77 Track Double Sided diskettes. Ver 2.0
Copyright (C) 1981 Exidy Systems, Inc.

Format only, Copy, or Exit (F/C/E)? ••• (return)

Do you have more than one drive
configured in this system (Y/N)? N

Place destination diskette in drive A
For initial formatting and
Hit any key when ready. (any key)

(formatting commences)

Tracks
Source:* 0-- 6
Source:* 7--13
Source:*14--20
Source:*21--27

~ii;; ,,o Source :*28--34
Source:*35--41
Source:*42--48
Source:*49--55
Source:*56--62

Tracks
Destination:* 0-- 6
Destination:* 7--13
oestination:*14--20
oestination:*21--27
oestination:*28--34
oestination:*35--41
Destination:*42--48
oestination:*49--55
oestination:*56--62
oestination:*63--69
Destination:*70--76

a!l&1 !~ Source:*63--69
10 1t>.J7°':: Source:*70--76

:10 ~ r· · Good Copy.
1 C t· -c"

More (Y/N)? [N]

Place system diskette in drive A and
Hit any key when ready to reboot. [any key]

(cold boots system diskette)

c. Format Only

The console I/0 for a Format Only operation would
appear as follows:

265

A>EXCOPY (return)

Exidy Disk Copy and Format Program
For 77 Track Single Sided 4iskettes. Ver 2.0
Copyright (C) 1981 Exidy Systems. Inc.

or

Exidy Disk Copy and Format Program
For 77 Track Double ,Stded ."'~iskettes. _Ver 2.0
Copyright (C) 1981 Exidy Systems, Inc •

. .)'. :.
Format only, Copy, or Exit (F/C/E)? ••• r
Select drive {A,B, or-C) ••• B

Place diskette in drive B for_ formatting then
Hit any key when ready. any key

More (Y/N)? N

{etc.)

4. ERROR MESSAGES

(formatting commences)

Several conditions may display error messages on the
console, as follows:

A. Cannot format, try again

This message appears when the disk controller fails
either to write a track with the formatting data. or
after writing, the controller cannot read back each sector
on the track in question. An improper destination
diskette (such as a hard-sectored diskette) or a worn or
damaged one may cause this. Also, malfunctioning disk
drive hardware which prevents formatting may return this
message. Try fresh media and double-check the hardware.
The program automatically restarts after each error to
allow another attempt.

B. Destination is write protected.

This message is given if the destination diskette has
a write protect tab covering its write protect notch.
Either remove the tab or use an unprotected diske~te.

266

c. Write error on track I xx

Thl.s message is.
w~i~e operation cannot
(:x-:X) is specified.

returned during
be· performed.

o. Read back error on track I xx

formatting if the
The track number

This message is displayed if a track can be written
to but cannot be read back. a·f:ter repeatedly attempting to
do so. Again, the track number is specified as (xx).

., E • Additional Message

~·t I.itc,an't find your boot addressMJl
Please enter it ••• [hhhh.]

This occurs if a non-Exidy boot-strap controller prom
is used and the copy program can't determine where the
cold bootprogram is addressed. In this event, simply
enter the hexidecimal address of your boot-strap prom.
This should not occur if Exidy hardware and software is
used.

267

f.

1
l

0

I .
\
j

i C

\

' -i

.

s. Recoyery
t hji1W ~

If the copy program has errors while reading the source,
writing the destination, or v.erri-:£y1ng the destinatiOJl'·.diskette,
the program repeatedly attemp~ tme operation· ·until .ilUC.~ful.
If, after many attempts, the operation still ha~ eii:-r9ss,s, ·a
message is displayed and the error retry continues
indefinitely.

These messages are:
"- be\·E!gi Ji

Recovering from read e.r.r.b-"rtB/'t.rack I xx
a l ·_, s Clr.l;

Recovering from write errors, track I xx

If it appears that the copy program cannot recover
from an error, reset the computer to end processing and
check ground and otheir. • connections between computer and·
disk drive. Also check the diskette for wear. ~~seI~

268

'1'·
..,-B?,!J Ed •

>cd f Io!:
rL~ : s--::t' tt 9

nz a.rrtT
.bgit,

	Exidy CPM 1
	Exidy CPM 2

