
USER'S
MANUAL

Z80 Based Software
Development System

for the Sorcerer Computer

. ~

r(lA.~71! (JI/(A, ~ ~~,H(}7J/9lre)
kl~ v\4.~ /lVffL -7 ~I"~

Saf- !2ot11..('I/--e... SUG 7)7JLf7 ~~- (/>(N ~~ k IF /I.

'\),~ ~(/'{Ift VS~ J)SPLV ct>B~a1)H

/0 5"ET 5~ oj! ~~ J~ }i ~!$ Tor

~. ,~~.lJrf·?-?~3(C
e <fxP~~ c"D 16- £3-1 v~ "

~cp F f.!> so·~ cp cp ~ <P
'7 t4 C 0--'7 Cf>¢c(J1J
cD l~ Ecp
FE ¢I},

CC/;> \
CD If) F- C/J

c-"

DEu~c..o PN..6" r
HL("

I C% :
co:
0% :

·00:
SI::
So:

, CTIl.L

,CTnL

iC.TAl

(. TA..£.

-51<"
sv·
Ro
FlI

61 80
sv·

,..
II ,
J :

ST»n.r

SE"I1> Sro p

Il. fcs v e S TALr

n.EC.'''~_. Sro,-
"""-""'1 ~

, t.., r

inc. ----... (Data Products Division ~r--------

3'10 ,jcv~·~,

#####################################
• • #
=============================== #
= *************************** = #
= * * = #
= * THE DEVELOPMENT PAC * = #
= * * = #
= *************************** = #
=============================== #
• • #
#####################################

A zao BASED SOFTWARE DEVELOPMENT SYSTEM

FROM
EXIDY INC.

DATA PRODUCTS DIVISION
COPYRIGHT (C) 1979 BY EXIDY INC.

,969 West Mallde Ayenue

73lt -9'7/(j
~,,2 I

• Sunnyvale, Califomia 94086 • Telex 348-329 • (408) 136=2t19

I.

II.

THE DEVELOPMENT PAC

TABLE OF CONTENTS

CHAPTER

INTRODUCTION •••••••••••••••••••••••••••••••
THE DEVELOPMENT PAC
THE MODULES

DDT80
THE

THE
THE
THE
THE

DDT80
EDITOR
ASSEMBLER
LOADER
I/O DRIVERS

.
"Mil COMMAND

SECONDARY COMr-1ANDS
" R II COtJ.U.1AND
liE" COMMAND
"H" COMMAND
ilL" COMMAND

PAGE

1
2
4
4
4
4
5
5

7
8
8
1 1
13
15
1 6

III. SORCERER I/O • 17
WRITING I/O DRIVERS 18
THE DRIVERS 21
THE RMf BUFFERS 24

IV. EDITOR ••••••••••••••••••••••••••••••••••••• 27
TEXT BUFFER AND LINE POINTER 28
LINE EDITING 30
EDITOR I/O 31
CALLING THE EDITOR 33
EDITOR COMMANDS 34

B COMMAND 34
<CR> COMMAND 34
I CO~1AND 35
D COMMAND 35
T COMMAND 36
R COMMAND 36
W COMMAND 36
E COMMAND 37

AN EDITING EXAJ1PLE 38

TABLE OF CONTENTS

CHAPTER PAGE

v • ASSEMBLER. • 41
BASIC DEFINITIONS 42
ASSEMBLY LANGUAGE SYNTAX 45

LABELS 45
OPCODES 46
PSEUDO-OPS 46
OPERANDS 48
COMMENTS 51

ABSOLUTE AND RELOCATABLE MODULES 52
GLOBAL SYMBOLS 53
ASSEMBLER I/O AND OPERATION 55
ASSEMBLER ERRORS 57

VI. LOADER • 58
LINKING AND LOADING BASICS 59
LOADER SYMBOL TABLE 60
LOADER I/O 61
CALLING THE LOADER 62
LOADER ERRORS 63

VII. APPENDICES ••••••••••••••••••••••••••••••••• 64
APPENDIX A - OBJECT OUTPUT DEFINITION 64
APPENDIX B - REPARTITIONING Rro~ 67
APPENDIX C - MNEMONICS RECOGNIZED BY DDT80 71
APPENDIX D - ASSEMBLER ERRORS 72
APPENDIX E - LOADER ERRORS 73
APPENDIX F - COMMANDS (SUMMARIZED) 74
APPENDIX G - ACKNOWLEDGEMENTS 75

VIII. INDEX . 76

DEVELOPMENT PAC INTRODUCTION PAGE 1

INTRODUCTION

The Sorcerer that you· already own, or have just
bought, is a very sophisticated piece of equipment. You've
probably already heard the familiar "It can do anything you
program it to do!" Well, as you may have found out,
"programming" is a non-trivial task! The Standard BASIC
cartridge that is available for your Sorcerer was most
likely your first introduction to the world of programming.
You probably came up against the limitations of BASIC the
very first week you started using it!

Well, now you have an alternative! The DEVELOPMENT
PAC. The Development Pac will help you write zao machine
language programs with a minimum of effort and a maximum of
versatility. Contained in the cartridge is everything you
need (software-wise) to efficiently create, assemble, debug
and run zao machine language programs.

It is recommended that the user study the zao
instruction set and CPU architecture before using the
Development Pac. This manual is not intended to be ~
complete tutorial on machine language programming, but
rather a reference manual to explain the use and structure
of the DEVELOPMENT PAC.

We welcome you to the world of machine language
programming and hope that this Package will help you use
your Sorcerer computer and all of the power that it's
capable of!

Exidy
Data Products Division

DEVELOPMENT PAC INTRODUCTION PAGE 2

THE DEVELOPMENT PAC

The Development Pac consists of five main modules:

========================= MODULES: =========================
DDT80 - Designer's Debugging Tool
EDITOR - A line oriented source editor
ASSEMBLER - A relocatable, linking Z80 assembler
LOADER - A relocating, linking loader
SORCERERIO- The Sorcerer I/O routines

==

Each module will be explained in detail in their
appropriate chapters in the manual. Each module "talks" to
the Sorcerer through a "Vector" table. The Vector table
receives all data to be sent to the Sorcerer and all data
coming from the Sorcerer to the Development Pac. The Vector
table is formatted as follows:

======================= I/O VECTORS: =======================
:CI - Console input channel
:CO Console output channel
:01 Object input channel
:00 Object output channel
:SI Source input channel
:SO Source output channel

==

Each module will communicate through one or more of
the Vector table entry points which the user can assign to
any of the physical Input/Output drivers:

======================= I/O DRIVERS· ======================= .
:SK - Sorcerer Keyboard
:SV Sorcerer Video Screen
:11 Input from Sorcerer Cassette Unit # 1
:12 Input from Sorcerer Cassette Unit # 2
:01 Output to Sorcerer Cassette Unit # 1
:02 Output to Sorcerer Cassette Unit # 2
:CE Output to Sorcerer Centronics Driver
:AI Input to the "A" Memory Buffer (Object)
:AO Output from the "A" Memory Buffer (Object)
:BI Dummy Input into "B" Memory Buffer
:BO Output from the "B" Memory Buffer (Source)

==

DEVELOPMENT PAC INTRODUCTION PAGE 3

To make the connection more clear:

MODULES I/O DRIVERS
************* *********** SORCERER
* DDT80 * VECTOR ~ .. :;.:,~;:~:~e~~ ." ... /' :SK * ********
************* TABLE r')T', - :SV * * KEY *

** **** * 'tc>,-'-' r,(//L, * :I1 * * BOARD * #"",<" { : "
************* --> * :CI -1i lJ ...:;.;::s * :I2 * --> * *
* EDITOR * --> * :CO *~ --> * :01 * --> * VIDEO*
************* --> * :OI * --> * :02 * --> * *

--> * :00 * --> * :CE * --> * TAPE *
************* --> * :SI * --> * :AI * --> * UNITS*
* ASSEMBLER * --> * :SO * --> * :AO * --> * *
************* ******* * :BI * *MEMORY*

* :BO * *BUFFER*
************* *********** ********
* LOADER *

Each module in the Development Pac "talks" through
one or more of the vector table entry points (Exactly which
vector entry points should be used is discussed in the
section for each module). By using DDT80" the user can
assign anyone of the physical I/O drivers to anyone of the
vector table exit points. In this way, the user can make
anyone of the modules communicate with any part of the
Sorcerer. For example, the Editor messages can appear on
the Sorcerer video, or they can be sent to either one of the
cassette units, or they can be printed out on the Centronics
printer. This method of assigning I/O devices allows the
user a tremendous amount of flexibility. New devices can be
added very easily ,or the existing devices can be configured
in almost any combination.

DEVELOPMENT PAC INTRODUCTION PAGE 4

THE MODULES

DDT80

DDT80 (Designer's Dubugging Tool) is the monitor of
the Development Pac. It is the module that first receives
control when power is applied to the Sorcerer.

DDT80 can display and/or modify any RAM location in
the Sorcerer, display and/or modify any of the Z80 program
registers, and execute a user program, with breakpoints, or
any module in the Development Pac.

Every module in the Development Pac, except for the
special case of the Loader, returns control to DDT80 upon
completion of its appropriate task. DDT80 is then used to
set up the I/O vector table for use by the next module.

Editor

The Text Editor aids the user in the creation of
source text for use by the Assembler. With the Editor, a
user can create, load, store, change, append to, delete, and
print an entire source module in the Sorcerer RAM area or,
spooling the text a part at a time, from the Sorcerer's
cassette units.

The Editor
text buffer from the
for a very efficient

Assembler

also allows for reentry to preserve the
previous editing session. This allows
and quick RAM based mode of operation.

The Assembler is a two pass, relocating, linking Z80
assembler. By creating a program as a series of modules
instead of one single program, changes can be made to the
appropriate module and a quick reassembly can be performed
on only the altered source module. The linker can then load
all of the original modules along with the new, altered
module to create a complete object program. This method of
program development speeds up the debugging time needed to
complete a program tremendously by allowing editing and
assembling of only a small part of the final program. This
method also allows the creation of "universal" object
modules that can be kept on cassette tape and refered to in
later programs. -Then, at linkage time, the appropriate
module will be flagged as "undefined" so the user will then
know which object module cassette to load in next. After a

DEVELOPMENT PAC INTRODUCTION PAGE 5

period of time using this method, a huge library of object
tapes will be compiled for use by the program developer!

The Assembler also alrows for absolute assembly for
those programs that are to be loaded and run in a particular
area of memory or for those that do not need much debugging.
This gives the user the best of both worlds in developing
machine language programs.

Loader

The Relocating Linking Loader has the capability of
loading, from cassette tape or RM1 buffers, object modules
created by the Assembler. A single module or a series of
modules can be loaded at one time. If a series of modules
is to be loaded, the linker will resolve all "GLOBAL"
references among the modules. With this capability, the
user can create "universal" program modules that can be
"called" by other modules and then linked together as each
module is loaded!

The Linking Loader can also load absolute Intel
hexadecimal formatted object' modules like those produced
from other SOSO or ZSO absolute assemblers or the
Development Pac's Assembler in the "ABS~' mode. The Linking
Loader also has the capability of loading both absolute and
relocatable modules ·in the same loading session!

I/O Drivers

Each module in the Development Pac needs to have
some form of communication with the Sorcerer. Sometimes
this communication is with the video screen or the keyboard,
and other times it's with the cassette units or some other
peripheral device. The Development Pac will never know
exactly which part of the Sorcerer it's talking to.
Instead, each module "talks" to a "vector" point. As each
module needs information from the user or wants to output
information to the user, it passes control to a vector
point. The location of these vector points never changes;
however, by using DDT80 commands you can "tell" the vector
point to go to another location. At that location will be a
driver for the individual device the Development Pac wishes
to communicate with. This is why the module SORCERERIO is
included in the Development Pac. This module contain~
drivers for devices inside or connected to the Sorcerer.
Using DDTSO, you can assign any of the vector points to any
of the device drivers in the SORCERERIO module.

DEVELOPMENT PAC INTRODUCTION PAGE 6

Next, each module will be discussed in greater
detail along with its vector table assignments and commands.
As you study each module, play with it on your Sorcerer!
See what it can and can't do. To get the best and quickest
feeling for the DEVELOPMENT PAC you should ••••••••••.••

***** EXPERIMENT *****

DEVELOPMENT PAC DDTSO PAGE 7

DDTSO

DDTSO, the Designer's Debugging Tool, is the monitor
and program debugger for the Development Pac. Using DDTSO
you can display and/or modify any RAM memory location in the
Sorcerer, display and/or modify any of the ZSO internal
registers (including the stack pointer and program
counter!), execute any user program, with breakpoints, or
any of the other modules in the Development Pac.

When your Sorcerer is first turned on with the
DEVELOPMENT PAa inserted in the side slot (DO NOT remove or
insert the cartridge with the power on!), DDTSO will be
given control. It will first print· a sign-on message and
then display the monitor prompt "." (a period).

EXIDY ZSO DEVELOPMENT PAC
COPYRIGHT (C) 1979

At this point the user can enter anyone of the
DDTSO commands. Each command is a one letter command. "All
the user need do is type the letter. (No carriage return is
needed at this point.) DDTSO will accept the command, print
the command on the screen and print a space. The user can
then enter the parameters for the command. After entering
the parameters, a carriage return will execute the command.

DDTSO has five basic commands:

====================== DDTSO COMMANDS: =====================

M - Memory display/modify command
R - Register display/modify command
E - Execute program command
H - Hexadecimal arithernetic command
L - Loader transfer command

==

,E : E-t>
.. S .,f /Sf\-

ere fb As

E'b'1701L eO l. b SrAll.,:r L £"'Prtf Sol! PE/L-1
, I, f2-8..BI'Y7n..y [sovn-c.E. IN BUPP&A]

/Q $.$8"., I3i-SIl-

DEVELOPMENT PAC DDT80 PAGE 8

THE "M" COMMAND.

The II Mil command is the ~ory display ~modify
command. Using this command, you can display, in hexadecimal
format, the address and data of any location in the
Sorcerer. You can then, optionally, alter that data to any
value you chose. Note: the alter function will only work on
RAM locations. Atempts to alter ROM locations will have no
effect.

The format for the "M" command is:

==
.M Parameter #1,(Parameter #2) <Carriage Return>

==

Parameter
be in hexidecmal
interpreted to be
and is used to
values.

#1 must be specified and is interpreted to
form or, if preceded by a colon (:), it is
a mnemonic label. Parameter #2 is optional
specify the ending value for a range of

This command has three forms. The first form is
specified by using a single parameter in hexidecimal form.
For example:

.M 1234 <Carriage Return>

will display the address and data for the location 1234 hex
in the following format:

1234 SA
J

The cursor will appear on the same line and is
awaiting a secondary command. The secondary commands are:

============== "M" COMMAND ·SECONDARY COMMANDS ==============
- End command and return to DDT80

<Carriage Return> - Display next location
A - Display previous location

<Hex value> - Alter location to <Hex value>
==

The "." will end the "M" command mode and not alter
the contents of that location. The DDT80 prompt "." will
appear on the next line and await any DDT80 main command. If
the "." is preceded by a hex value, that location will not
be altered.

The <Carriage Return> will not alter the contents of
that location (Unless preceded by a hex value). It will

DEVELOPMENT PAC DDT80 PAGE 9

cause the "M" command to display the contents of the next
location after the present location. If the <Carriage
Return> is preceded by a hex value, the contents of that
locat~on will be altered to the hex value and then the
contents of the next location will be displayed. For
example:

.M 1234 <Carriage Return>
1234 5A <Carriage Return>
1235 6C <Carriage Return>
1236 77 6A <Carriage Return>
1237 •

The "1\" will not alter the contents of the present
location (Unless preceded by a hex value). It will cause the
"M" command to display the contents of the previous
location. I·f the "1\" is preceded by a hex value, that
location is altered to the hex value and then that same
location is displayed again with the new value. For example:

.M 1234 <Carriage Return>
1234 5A 1\
1233 FC 1\
1232 61 F31\
1232 F3 1\
1231 66 •

The second form of the "M" command is specified by
entering parameter #1 as a hex value and parameter #2 as a
hex value. For example:

.M 1230,1257

will display, in hexadecimal format, the beginning address
of each 16 byte block followed by the hex value of the 16
bytes. For example:

1230 11 3A 33 55 F6 73 41 43 65 FF FF FF FF DF FF FF
1240 FF 5F 43 21 00 00 00 FF AF 63 00 00 00 FF FF FF
1250 BA ED CB FO 65 55 63 7F

This form of the command is used to examine an area
of memory and verify its contents. It has no "alter"
provisions and is only intended to be a display command.

The third form of the "M" command is specified by
sustituting a mnemonic for any of the hex values in the
forms above. A mnemonic is created by typing a colon (:)
followed by a two letter code. All of the two letter codes
which the Development Pac recognizes are listed in appendix
C. Each of the mnemonics is associated with a specific

DEVELOPMENT PAC DDT80 PAGE 10

address. The mnemonic is used to simplify the task of
remembering often used memory locations. For example, to
change the Source Output channel to the Centronics printer
driver, you would use the first form of the "M" command with
the appropriate mnemonics:

.M :SO <Carriage Return>

: SO : SV

The "M" conunand was told to display the memory location
corresponding to the mnemonic ":SO". It carne back and told
us that the Sorcerer Video driver, :SV, is currently
assigned to the Source Output channel. To alter this. to the
Centronics printer driver the user would use the "1\" form of
the M command preceded by a mnemonic:

: SO : SV : CE 1\
: SO :CE

The "1\" secondary command was used so that the user could
verify that the alteration had been properly performed. Had
the user wanted to alter more than one location, the
<Carriage Return> secondary command would have been used to
access the next location.

It should be remembered that the purpose of the
mnemonics is to give an easily remen}.bered label to an often
used address. When accessing through memory using the "M"
command, all addresses that correspond to a mnemonic label
will be printed out in mnemonic form. All mnemonics consist
of two letters. Anyone letter mnemonics listed in appendix
C should be typed in with spaces to compl~ .. t te the two
letters. 1\ \

\No I,

DEVELOPMENT PAC DDT80 PAGE 11

THE "R" COMMAND

The "R" command is the register display/modify
command. DDT80 maintains an area of memory to hold all of
the Z80 internal registers that are used by a user's
program. As the user executes and breakpoints through his

. program, DDT80 will save and restore the user's registers as
his .program is stopped and started. Before the user reenters
or begins his program, he can alter any of the registers to
correct a program fault or test a program condition. With
the "R" command the user even has control and display
capability of the stack pointer and program counter as well
as all of the standard and alternate registers.

The form of the "R" command is

==
~R (1) <Carriage Return>

==

If the "Rn is entered alone on the command line,
then all of the registers will be displayed on the next
line. No heading that identifies the registers will be
printed. This is the short form of the register printout. To
have register headings printed along with the register
values the "1" should be entered on the command line. For
example:

.R <Carriage Return>
AOOO 0181 0104 CFB3 C09A FFEE EDF6 9C3E C3DC FE9B D6ECF1BE FFB4

.R 1 <Carriage Return>
PC AF IIF BC DE HL A'F' B'C' D'E' H'L' IX IY SP

AOOO 0181 0104 CFB3 C09A FFEE EDF6 9C3E C3DC FE9B D6ECF1BE FFB4

The headings across the top of the register print
out represent the register names as follows:

PC = Program Counter
AF = Accumulator / Flag register
IIF = Interrupt status / Interrupt mode flag
BC = B register / C register
DE - D register / E register
HL = H register / L register
A'F'= A' register / Flag' register
B'C'= B' register / C' register
D'E'= D' register / E' register
H'L'= H' register / L' register

DEVELOPMENT PAC DDT80

IX = IX index register
IY = IY index register
SP = Stack Pointer

The Flag register is formatted as follows:

7 BIT 0
FLAG REGISTER = S Z X H X P N C

S = Sign flag
Z = Zero flag

WHERE:

X = Indeterminate flag
H = Half carry (for BCD operations)
P = Parity or overflow flag
N = BCD add/subtract flag
C = Carry flag

PAGE 12

The "I" and "IF" registers represent the interrupt
status of the Z80 processor when the user program was
stopped by the breakpoint. The "IF" register represents the
interrupt flip-flop maintained' by the Z80. If IF=O, then
interrupts were disabled when DDT80 received control. If
IF=4, then interrupts were enabled. Upon reset or power-on
IF is set to O. The "I" register represents the interrupt
mode that the Z80 was in when the breakpoint was
encountered. See the Z80 programming manual for the
interrupt mode definitions.

The "R" command is a display function only. The "M"
command should be used to alter any of the registers.
Appendix C lists the mnemonics corresponding to the
locations within the Development Pac containing the register
values. By using the display/modify function of the "M"
command the user may alter any of the registers before
returning control to his progam. This feature of register
display/alteration is a very powerful debugging tool when
used properly.

DEVELOPMENT PAC DDT80

THE "E" COMMAND

PAGE 13

r~~ ~£k._/l1u~w~
-;e S-tPtP a .l,

pp

The "E" command is the program execute and
breakpoint set command of DDT80. It is the only command that
can transfer control to a user's program. Before executing
the user's program, all of the user's registers are restored
to the value when DDT80 recieved control or the modified
value stored in the register storage area. Using the "E"
command the user has the capability of setting a breakpoint
or "stop" point in his program. This feature adds still
another powerful debugging tool to the Development Pac.

The format for the "E" command is:

===========,;;::f:.=================;:'#.=~============================
~, ./

.E Parameter #1 (,Parameter #2) <Carriage Return>
==

Parameter #1 must be specified and is interpreted to
be in hexadecimal format. Parameter- #2 is optional and is
also expected to be a hex number. Parameter #1 is the
execution address. Parameter #2 is the breakpoint address.
Only one breakpoint may be set at a time with the "E"
command. To execute a user's program, only parameter #1 need
be specified. To insert a breakpoint in a user program, both
parameters must be entered. For example:

.E 1234,12FF <Carriage Return>

will execute the user's program starting at address "1234
hex" with a breakpoint inserted at address "12FF hex". The
user's program should have some sort of executable code at
the execution address. When the user's program executes the
instruction beginning at the breakpoint address, DDT80 will
then receive control, save all of the user's registers and
then go into the command mode of DDT80.

At this point, the way in which breakpoints are
implemented should be discussed. When the "E" command sets a
breakpoint, it saves the byte of data at the breakpoint
address. This is for later restoral after the breakpoint has
been encountered. The "E" command inserts a RESTART 7
instruction at the breakpoint address. The RESTART ,7
instruction will, when encountered to be executed, transfer
control to location "0038 hex". At that location the "E"
command will insert a jump back into DDT80. In this way
DDT80 can receive control from a user's program and still
remember where in the user's program it left off.

Knowing this about breakpoints, there are a few
rules to follow when using breakpoints. Since the RESTART 7

DEVELOPMENT' PAC DDT80 PAGE 14

instruction transfers control to 0038 hex, no user's code
can be at 0038, 0039, or 003A hex. These three bytes are
reserved for the jump instruction back into DDT80. It should
be remembered that this restriction only exists if the user
is using breakpoints to debug his program. Another
restriction to follow is that DDT80 has a RAM storage area
beginning at 0100 hex and ending at 0138 hex. This area
should not be used by a user's program that is receiving
control from DDT80. The Sorcerer Power-On l-1onitor should be
used to transfer control to programs executing in this area
of memory. An easy method of program development would
consist of assembling and linking a program at an address
above the DDT80 RAM area while in the debugging process and
then, after the program is completly debugged, relink it at
the actual execution address.

The "E" command is also used to transfer control to
each of the other modules in the Development Pac. The
Linking Loader is a special case, however and is not given
control by the liE" command. To execute another module, such
as the Editor, the user should first use the "M" command to
set up the appropriate I/O vector channels for the
appropriate module and then use the "E" command,
substituting the appropriate mnemonic for parameter #1. For
example:

.E :ED <Carriage Return>

will execute the EDITOR by looking up the Editor's address
from the mnemonic table.

£ ,..$:"' <f:,0 c1{)J\.,_

• £. i €-O c" L b 5 r,a-rv7
srl!rfL-I

DEVELOPMENT PAC DDT80 PAGE 15

THE "H" COMMAND

DDT80 has an arithmetic capability that allows
hexidecimal addition and subtraction. This arithmetic
capability can be used with any of the above commands in
place of a parameter in the command line. DDT80 will process
the series of additions and subtractions to form a single 16
bit value to use in place of the parameter. The "H" command
allows for using this arithmetic capability without
affecting any of the other commands.

The form of the •• H" command is:

==
.H +operand+operand- ••••• +operand=zzzz <Carriage Return>

==

The user would enter the "H" and then the arithmetic
expression. Only the "+" and "-" are legal operations. If
the sign of the first operand is omitted, it is assumed to
be +. The "=" (equal) causes the 4 digit (least significant
4 digits) result to be displayed. When the <Carriage Return>
is entered, DDT80 returns to accept another command.

For example:

.H 1234+32-AABF+DDD3=457A <Carriage Return>

It should be noted that the user does not have
arithmetic capability of only the "H" command in DDT80. Any
of the DDT80 commands will perform hexadecimal arithmetic to
form its parameters.

DEVELOPMENT PAC DOT80 PAGE 16

THE "L" COMMAND

The "L" command is the loader transfer command of
DDT80. It operates similarly to the "E" command in that it
is· used to transfer control to another program. However,
this command is a special case for transfer operations.

When the Linking Loader is called from DDT80, it is
used to load object modules that were created by the
Assembler into the Sorcerer's RAM area. As the Loader does
this, it maintains a "GLOBAL" symbol table to resolve all
references among the modules that it is loading. Thus, the
loader uses two areas of RAM. One for .the actual program
object code-,-and the other for the module "GLOBAL" symbol
table. The program object code "grows" up in memory. That
is, if it starts at location 0000 hex, the next byte loaded
will be at 0001 hex. The "GLOBAL" symbol table "grows" down
in memory. That is, if it starts at 0100 hex, the next byte
loaded into the table will be at DOFF hex.

The format for the "L" command is:

==
.L Parameter #1, Parameter # 2 <Carriage Return>

==

Parameter # 1 specifies the beginning of the program
object code. It supplies a "base" address that the Loader
will add to each relocatable module that it loads in.

Parameter # '2 specifies the beginning of the
"GLOBAL" symbol table. It should be remembered that this
value should be a "high" value that the table will "grow"
down from.

Altogether, DDT80 provides a simple, efficient and
powerful means of debugging and executing user prog~ams in
the Development Pac. \

DEVELOPMENT PAC SORCERER I/O PAGE 17

SORCERER I/O

Each module in the Development Pac communicates with
the Sorcerer through the Vector channels. Each one of the
six Vector channels can be assigned to any address in the
Sorcerer by use of the "M" command in DDT80. (See the "M"
command in DDT80 for details.) For the convenience of the
user, some of the· most commonly used I/O drivers that
communicate with the Sorcerer have been included in the
module SORCERERIO. All of the included Sorcerer I/O drivers
are:

=================== SORCERER I/O DRIVERS ===================
:SK - Sorcerer Keyboard
:SV Sorcerer Video Screen
:I1 Input from Sorcerer Cassette Unit # 1
:I2 Input from Sorcerer Cassette Unit # 2
:01 Output to Sorcerer Cassette Unit # 1
:02 Output to Sorcerer Cassette Unit # 2
:CE Output to Sorcerer Centronics Driver
:AI Input to the "A"Memory Buffer (Object)
:AO Output from the "A" Memory Buffer (Object)
:BI Dummy Input into "B" Memory Buffer
:BO Output from the liB" Memory Buffer (Source)

==

Each module in the Development Pac communicates to
the user through the vector channels. As the module needs to
output information to the user or get information from the
user, it transfers control to the appropriate vector. point.
This vector point will then transfer control to the physical
device driver that is assigned to it. That driver may be any
of the device drivers listed above or one that the user has
written and located somewhere in memory. The user can even
use the Development Pac to write and assemble the device
driver!

DEVELOPMENT PAC SORCERER I/O PAGE 18

Writing I/O Drivers

An I/O driver in the Development Pac is used to pass
a character to or receive a character from some sort of
device. For the sake of this example we will use the
Sorcerer video screen as an output device and write an I/O
driver for it. Note: there is already an I/O driver for the
Sorcerer screen (:SV) but, it is recreated here for
demonstration.

After the vector channel has passed control to the
device driver, three registers contain information for the
device driver to use. These registers are:

================ I/O DRIVER REGISTER USAGE: ================
REGISTER ON INPUT ON OUTPUT

A
D
E

DATA
DATA

CONTROL

NOT USED
DATA

CONTROL
==

The "A","H" and "L" registers are free to be used or
,destroyed by the I/O driver. All other registers should be
intact when the I/O driver is exited. Upon entry to the
driver a valid stack will be established. This may be used
for pushing registers.or calling subroutines. The stack must
be maintained and returned to the proper level before
executing the "RET" instruction to exit the I/O driver.

The data for the I/O device should be passed or
received from the "A" or liD" register. For output, the data
will be in the "D" register only. For input, the data should
be returned in both the "A" and "D" registers.

The "E" register is used to pass control parameters
to the I/O device driver. Each bit in the "E" register is
used to "flag" some sort of control operation. For example:

=====================
BIT
-0-

1
2
3
4
5
6
7

CONTROL REGISTER =====================
USAGE

NOT USED
NOT USED
NOT USED
OPEN DEVICE FLAG
CLOSE DEVICE FLAG
DUAL DEVICE SELECT FLAG
NOT USED
Ir~1EDIATE RETURN FLAG

==

DEVELOPMENT PAC SORCERER I/O PAGE 19

Bit # 3, Open Device Flag, is set to a one when the
Development Pac is using the device for the first time or
wants an iteration or a "rewind" operation performed. When
the driver sees this bit set, it should perform any
operation necessary to "rewind" the device- Such as closing
and opening a disk file or issuing a message to the user to
tell him to rewind the cassette units. If the device has no
provisions for "opening", then this bit may be ignored.

Bit # 4, Close Device Flag, is set to a one when the
Development Pac is finished with the device for that module.
This flag should be used for such things as writing out
unfilled buffers to the device or closing a disk file that
was previously opened. Again, if the device has no
provisions for "closing", then this bit may be ignored.

Bit # 5, Dual Device Select Flag, is used internally
by the I/O driver to select one of two devices that can use
the same I/O driver. For instance, the two Sorcerer cassette
units or a dual drive disk system. This flag is only an
internal flag to the device driver and is not set by the
Development Pac. It is used in the Sorcerer cassette unit
drivers, but may be used by any driver the user wishes to
write.

Bit # 7, Immediate Return Flag, is set to a one when
the Development Pac wants to "bypass" the I/O driver. This
flag is not used' in the present version of the Development
Pac, but is mentioned here and may be included in future
releases.

Now, let's return to writing the I/O driver for the
Sorcerer video screen. The easiest way to send a character
to the Sorcerer screen is to call the Sorcerer's Power-On
Monitor Video Driver routine. There is only one problem with
using this method. The Power~On Monitor expects the
character to be in the "A" register and the Development Pac
Vector channel sends the character in the "D" register. So,
before the Power-On Monitor is called, the "D" register will
have to be loaded into the "A" register. Knowing this, the
Sorcerer Video I/O driver would be written:

7A
CD 1B EO
C9

LD
CALL
RET

A,D,
VIDEO

That's all there is to it!
Hopefully, this section contains enough information

for the user to write an I/O driver for any device he may
interface to his Sorcerer. After the driver is written, it
should be loaded at some memory location not used by the
Develoment Pac, such as 0000 to DOFF hex, and then enabled
by assigning it to any of the Vector channels by use of the
II Mil command in DDT80. For example, the user could interface

DEVELOPMENT PAC SORCERER I/O PAGE 20

an RS232 printer, assign it to the Source Output channel
(:SO), and have all of the assembly listings printed on it.

For the convience of not having to reload them every
tim~ the Sorcerer is turned on, most of the common I/O
drivers for the Sorcerer have been included in the
Development Pac. Only two of them are assigned by DDT80 when
it is first turned on. These are :SK and :SV for the Vector
channels :CI and :CO respectfully. This provides a means of
immediate communication to the Development Pac. It should be
remembered that these devices do not necessarily have to be
left connected to these Vector channels, but may be
reassigned .to some other Vector channel or have some other
device assigned to the Console Vector channels. Also, any
device may be connected to more than one Vector channel at
one time •

. Next, each of the included device drivers will be
discussed in more detail.

DEVELOPMENT PAC SORCERER I/O PAGE 21

THE DRIVERS

:SK - THE 'SORCERER KEYBOARD DRIVER

This driver will scan the Sorcerer keyboard until
any key is pressed. It will then return with the ASCII code
for that key in the appropriate registers. This driver may
be assigned to any input Vector channel. It should be noted
that this driver may be assigned to the Source Input channel
(:SI) during an assembly to create a "dynamic" assembler.
This provides a great Z80 opcode leprning tool for the
beginner!

:SV - THE SORCERER VIDEO DRIVER

This driver was demonstrated above. It will pass the
character in the data register to the Sorcerer screen,
performing any necessary scrolling or erasing operation.
This driver may be assigned to any output Vector channel.

:I1 - CASSETTE UNIT # 1 INPUT DRIVER

This driver will perform all of the buffering
necessary to use the cassette units. Each time the driver is
called with the "open" flag set, it will print the following
message on the Console Output channel (:CO):

REWIND CASSETTE. HIT ANY KEY WHEN READY.

The user should then stop the cassette recorder,
rewind the tape to the beginning ,of the file, put the
recorder back on "play" or "record" and then hit any key on
the device connected to the Console Input channel (:CI). The
same message will' be printed for both input and output
operations. So, the user should keep track of which units
are performing which operation.

When th~ cassette driver is called with the "close"
flag set, it will output the' remaining contents of the
buffer to the cassette unit and then return.

It is recommended that the user use the Serial Data
cable with the cassette routines provided for the
Development Pac; however, it is not necessary, provided that
long source files are not read into the Assembler. This is
because the Development Pac provides for full motor control
of both cassette units. It can then "buffer" the output and
input in 256 byte blocks.

The cassette files maintained by the Development Pac

DEVELOPMENT PAC SORCERER I/O PAGE 22

ar~Qt ~QID~atable with the cassette files maintained by the
Sorcerer r s Power-On t-1oni tor. The Development Pac uses only
ASCII formatted files for source and hex files. There are no
provisions for saving machine code files in the Development
Pac. Instead, the Linking Loader returns control to the
Power-On Monitor after loading a program. It can then be
saved using the tape I/O routines in the Power-On Monitor.

All of the cassette files used and . created by the
Development Pac are unnamed. That is to say that they have
no real beginning point; however, they should always be read
in from their physical starting point on the tape to avoid
reading from the middle of a block on the tape. All of the
files have an "end of file" marker on them that is used by
the Assembler, Linker and Editor to detect the end of a
file.

Extreme care should be exercised when using the
cassette interface with the Development Pac. The user should
make certain that all volume and tone settings on the
recorder are correct and always be aware of which cassette
unit is being used for play-back and which unit is being
used for recording. Rewinding the wrong unit at the wrong
time could result in a loss of information!.

The user shouid also be careful to have the tape
head positioned off leader in the tape during a "record"
operation. Always make sure after rewinding a cassette unit,
to move the tape forward and off the leader before putting
the recorder on "record".

:I2 - CASSETTE UNIT # 2 INPUT DRIVER

This driver performs the exact same operations as
the driver described above, except this driver will input
characters from cassette unit #2. It should be noted that
the user should never use both cassette input drivers at the
same time. Doing so would result in a buffer conflict and a
probable loss of information.

:01 - CASSETTE UNIT # 1 OUTPUT DRIVER

This driver performs the exact same operation as the
driver described above, except this driver will output
characters to cassette unit # 1. It should be noted that the
user should never use both cassette output drivers at the
same time.

:02 - CASSETTE UNIT # 2 OUTPUT DRIVER

This driver is. the same as the one above, except
this driver will output characters to cassette unit # 2.

DEVELOPMENT PAC SORCERER I/O PAGE 23

:CE - 'CENTRONICS PRINTER DRIVER

This driver is used to print on a Centronics type
printer that has been connected to the Sorcerer's ~aralle~
port according to the specifications described in the
Sorcerer technical manual. This driver will output to only
the printer and not the Sorcerer screen.

DEVELOPMENT PAC SORCERER I/O PAGE 24

THE RAM"BUFFERS

To speed the development process of writing
programs, RAM buffer drivers have been included with the
Development Pac. These RAM buffer drivers are extremely fast
and provide a very quick and efficient means of data
storage. However, the user must use care when using the
buffers to insure that they are not inadvertantly destroyed.

When DDT80 first receives control it partitions the
available memory in the Sorcerer into four parts. These four
parts are formed as follows:

Partition #1 = Top of RAM - 768 bytes TO Top of RAM

This partition is for I/O storage and buffering and
stack space. From the top of RAM down 256 bytes is the
Sorcerer Power-On Monitor data area and stack. This stack is
also used by the Development Pac. From that point down for
the next 512 bytes are two 256 byte cassette unit buffers.
One for input and one for output. The ending address of this
partition will normally be the top.of RAH for the Sorcerer
being used located in locations FOOO and F001 hex. The
beginning address for this partition is stored by DDT80 in
locations 0136 and 0137 hex. This partition should always be
left intact and never loaded into by any of the modules in
the Development Pac. There are no buffer drivers for this
area of memory.

ftl l.E J~partition # 2 =(Partition #1 to 0000 hex)/2 TO Partition #1

~~-:(, JCFf: This partition is called the "B" memory buffer. It
is normally used in the Development Pac for source code
storage. The Editor uses this partition for its buffer and
leaves with the buffer intact for later reentry and
modification. As long as this partition is not overwritten
or loaded into, the user may reenter the editor and correct
or modify any source code line very quickly without the need
to reload the entire text. There are two drivers for this
partition available to the user, :BI and :BO. :B1 is not
really a driver, but a "dummy" driver. This is because the
user never really needs to "input" into the "B" buffer. The
Editor "I" command or "R" command should always be used to
"input" into this buffer. The :BI driver will simply return
ETX characters (03 hex) to signify that there is no input.
The :BO will output each character in the "B" buffer one at
a time. When the "open" flag is set the buffer pointer will
be reset to the beginning of the buffer.

DEVELOPMENT PAC SORCERER I/O PAGE 25

This partition will occupy approximately 1/2 of the
available memory in the Sorcerer. The beginning address for
this partition is stored by DDTBO in locations 0134 and 0135
hex. The ending address for this partition is the beginning
of partition # 1.

Partition # 3 = (Partition #2 to 0000 hex)/2 TO Partition # 2
£!I{b~ 3E 7E.

This partition is called the "A" memory buffer. It
is used in the Development Pac mainly as the object buffer.
It is normally assigned to the Assembler Object Output
Vector to accept the hex file and then to the Loader Object
Input Vector to load the hex file. This provides for very
quick assembly and loading. There are two drivers provided
for this buffer, :AI and :AO. :AI is used to input
characters into the buffer and :AO is used to output
characters from the buffer.

This partition occupies approximately 1/4 of the
available memory in the Sorcerer. The beginning address of
this partition is stored by DDTBO at locations 0132 and 0133
hex. The ending address of this partition is the beginning
of partition # 2.

Partition # 4 = 0100 hex to Partition # 3

This partition is used for storage by DDTBO, the
Editor and the Assembler. The Assembler symbol table is also
formed in this partition. The Loader does not have any
storage in this partition and can therefore load user
programs in this area of memory. A normal mode of operation
with the Development Pac is to write the source code for a
program in the "B" buffer (partition # 2), assemble it
placing the hex file in the "A" buffer (partition # 3), and
then load it into partition # 4.

DDTBO uses locations 0100 hex to 013B hex. The
Assembler and Editor use locations 0139 hex on up. The user
may ass~lble and edit his program to run at any address from
0139 hex to the end of partition # 4. In this way the user

·has access to the powerful breakpoint. and register commands
in DDTBO to debug his program. If the user then finds a
"bug" in his program, he can easily reenter the Editor,
modify his program, reassemble it and then reload it for
debugging again! All in the span of a few seconds!

It should be remembered that these partitions are
set up to allow the user the flexibility of a very fast and
effecient development process. However, the user .is not
restricted to use this RAM based mode of developing a
program. If the user's program is too large to fit in the
size Sorcerer he has or if the user wants to run his program
in one of the other partitions, he may use the cassette
drivers to II spool" his files and therefore not use the
partitions at all! This makes development more time

DEVELOPMENT PAC SORCERER I/O PAGE 26

consuming, but allows for more flexibility in program size
and running parameters.

:AI - "A" BUFFER INPUT DRIVER (OBJECT)

This driver will input characters into the "A"
memory buffer described above. When this driver is called
with the "open" flag set in the control register, the memory
pointer is reset to the beginning of the buffer and the
character in the data register is loaded into the buffer.

:AO - "A" BUFFER OUTPUT DRIVER (OBJECT)

This driver will output characters from the "A"
memory buffer described above. When this driver is called
with the "open" flag set in the control register, the memory
pointer is reset to the beginning of the buffer and the
first character in the buffer is returned.

:BI - DUMMY DRIVER (RETURNS ETX (03 hex) CHARACTERS)

This driver will always return with an ETX character
(03 hex) in the data register. The user must assign the :BI
driver to the :SI channel when creating a new file in the
Editor. It is used with the Source Input channel to tell
the Editor that there is no input file when creating a new
file. The Editor's "E" command will read all input from the
:SI channel into the "B" buffer before returning to DDT80.

:BO - "B" MEMORY BUFFER OUTPUT DRIVER (SOURCE)

This driver outputs characters from the "B" memory
buffer described above. When this driver is called with the
"open" ,flag set in the control register, the memory pointer
will be positioned to the beginning of the "B" memory buffer
and the first character in the buffer will be returned in
the data registers.

The user should study the drivers listed above and
experiment with each one to learn its full potential. By·
using the drivers effeciently, the user will have a very
powerful machine language development tool!

DEVELOPMENT PAC EDITOR PAGE 27

EDITOR

The Development Pac has a line-oriented Text Editor
for creating and altering ASCII source files. A source file
is made by calling the Editor and entering the source lines
from the console. It can' later be corrected by reading the
source in and adding or deleting code.

The Text Editor commands are summarized below:

===================== EDITOR COMMANDS: =====================

B - point to the beginning of text
n<CR> - move line pointer n lines and display

I - insert source lines
nD - delete n source lines
nT - type n source lines on console display
nR - read n source lines into the buffer
nW - write out n source lines from the buffer

E - exit from editor and close file

==

DEVELOPMENT PAC EDITOR PAGE 28

TEXT BUFFER and LINE POINTER

This is all implemented through the use of a text
buffer. The size restraints of this buffer are determined by
the available RAM in the Sorcerer that the Pac is being used
with. As a rule of thumb, the text buffer can take up just
under half of the available RAM area. The actual size of
the buffer at any given time depends on the amount of source
code it contains; the buffer expands as it is being filled
with source lines until the maximum byte count allowed is
reached.

So that the lines of text within the buffer can be
manipulated, a conceptual (or imaginary) line pointer is
maintained. The pointer is always positioned at the
beginning or end of the buffer or at the first character of
a source line; a source line, hereon referred to as "line"
is defined as a string of ASCII characters ending with
<CR><LF>. Generally, the pointer is positioned at the point
in the buffer where the next action of the editor will be
initiated. This pointer can be moved by the user.

The text buffer operation is relatively simple.
Upon entry to the Text Editor (not reentry, which is~-'
explained later), the buffer is empty. At this time, the
pointer points to both the beginning and the end of the
buffer. If the user is creating a new source file, lines
will be inserted into the text buffer through the console
input channel (:CI) before the line pointer. Therefore, the
pointer will point to the end of the buffer when the user
stops inserting. If the user wishes to then edit these
lines, the pointer can be moved and other operations may be
done.

If the user is changing or updating an already
existing source file, lines can be read -from an input
device, such as a cassette player, into the text buffer via
the source input channel (:SI). These lines will be put at
the end of the buffer; so if it is empty, they will be the
sole contents of the buffer. The pointer position will
remain unchanged.

If the buffer expands to its maximum size and the
user wishes to insert more lines into the text or read more
lines in from the source input channel, some of the lines in
the buffer will have to be written out. This is done via
the source output channel (:SO) to a device such as a second
cassette unit. Lines are written from the beginning of the
buffer and the line pointer is not affected. The user can
then delete these lines from the buffer and continue line
insertion or read in more lines at the end of the buffer.

When the user wishes to leave the Text Editor and

DEVELOPMENT PAC EDITOR PAGE 29

renter DDTBO, all the lines in the text buffer are written
out through the source output channel. If there are any
more lines that haven't been read in via the source input
channel yet (unprocessed source lines), they are read and
output to the source output channel. /J.4A......$EIJ....

The user can ~ente&: the Text Editor at a later time ..
if so desired. The contents of the text buffer will usually C,*Nf/'fIJ1!JIY1)
be unchanged (exceptions will be explained later); whatever
was in it upon leaving the editor previously will still be
there. The pointer· will be positioned at the beginning of
the buffer.

. .

DEVELOPMENT PAC EDITOR PAGE 30

LINE EDITING

As the user is entering commands to the ,editor or
source lines to be placed in the buffer from the console
input channel, line editing is available. Before the <CR>
is typed in by the user, the line is maintained in a line
buffer; when the <CR> is entered, this buffer is effectively
emptied until a new line is started. Within this buffer,
characters can be deleted or tabulations can occur.

Typing SHIFT/RUB will delete the last character in
the buffer entered by the user and will move the curser back
one position on the console output channel (:CO), usually a
video display. Tab stops are set at character positions 9,
17, 25, 33, 41, 49, and 57 of the line. Hitting the
TAB-SKIP key will cause spaces to be inserted in the line
buffer from the curser's current position up to but not
including the next tab stop position. On the console out
channel, the curser will jump to the next tab stop. Tabs
mistakenly entered can be deleted, but they must be done so
space by space.

The line buffer is 64 characters long but the 64th
is never used by the user. The editor will always insert a
<LF> after a user's <CR> and a byte must be reserved. When
at position 63, the user can only enter a SHIFT/RUB or <CR>.
Therefore,excluding the <CR><LF>, the user can enter lines
including up to 62 cha~acters. It should be noted, however,
that all 62 characters are not necessarily displayed via the
console output channel. Depending on what device is
assigned, some characters, particularly control characters,
may not be displayed; these characters are entered into the
buffer though and are counted as characters in the line even
if the user cannot see them.

DEVELOPMENT PAC EDITOR PAGE 31

EDITOR I/O

To call the Text Editor, the user must be in DDT80.
Before calling the Editor though, the I/O channels should be
set up. The method of assigning devices to the I/O channels
is explained in the section on DDT80.

When a source file is first created, all source
lines ~e entered through the :CI channel. So are all Editor
commanas. The Editor's prompt, any messages it has for the
user, any lines the Editor is commanded to display, and
echoes of every character entered by the user via the :CI
channel are output through the :CO channel. The :01 and :00
channels are not used by the Editor. The :SI channel is
used to input, to the Editor, the user's source file. When
the user is creating a new source file and there is no
sour,ce to be input, a dummy input driver, :B1, should be
assigned to :SI. This will keep the Editor from looking for
the end of a source file, an <ETX> character (which in this
case would not exist since no source exists), when the user
exits from the Editor. The :SO channel is the channel
through which the user's ~dited file is output upon leaving
the Editor. Also, anytime the user writes lines from the
text buffer, they go out through the :SO channel.

As an example, if the user was working in the
cassette-based mode of operation, the channels could be
assigned as follows:

:CI=:SK
:CO=:SV
:SI=:I1 (or :12 for unit # 2)
:SO=:02 (or :01 for unit # 1)

The user here communicates with the Editor, and vice versa,
through the Sorcerer keyboard and video display. The source
,input comes from cassette unit 1 and the source output is
sent to cassette unit 2.

If the user was' working in the RAM-based mode of
operation, the channels would'normally be assigned as shown:

:CI=:SK
:CO=:SV
:SI=:BI
:SO=:SV

As in the above example, the user and the Editor would
communicate through the Sorcerer. :BI would be the dummy
driver for source input unless the user had a file to read
into the buffer; then the driver for the correct device

DEVELOPMENT PAC EDITOR PAGE 32

.would be assigned. :SV is used as the source output channel
so when the user leaves the Editor, the source is just
displayed on the screen and still remains in the buffer RAM.
"It should be noted here that no matter what device is
assigned to the :SO channel, after leaving the Editor, the
text buffer remains unchanged. The only ways to alter its
contents besides entering the Editor again and updating the
buffer are to use the Relocating Linking Loader to load into
that area, to run a user program that writes into that area
in RAM, or to use the DDT80 Mil conunand to modify that area
of RAM.

The following shows what devices can be assigned to
the channels the Editor uses:

:C1 :CO :S1 :SO

:11 :01 :I1 :01
:12 :02 :12 :02
:SK :SV :SK :SV
:AO :A1 :AO :A1
:BO :CE :BO :CE

:BI

Appendix C specifies the driver ,symbol for each device.

DEVELOPMENT PAC EDITOR PAGE 33

CALLING THE EDITOR

After the I/O channels have been set up in DDT8D,
the user can then call the Text Editor. To enter at the
normal entry point, the user types

.E :ED<CR>

and the Editor prompt, an asterisk, will appear when the
Editor is ready to receive commands. To enter the Editor at
the reentry point, the user should type

.E :ER<CR>

and the Editor will respond with its prompt. The line
pointer is positioned at the beginning of the buffer when
either entry point is used.

1) (>j f.-. 5 ~ "3 £ "7 F e ¢ fJ. r-.:..J ~ ck.-.-~ L.,

e. 3~<C-<1. i ~ Eb(TO IL ~.c : 1: 1> \ .:I r ~
t1> cf' e, ? e. <i; tp J ~ ~ ~ .e..Jf. a./ ~ ~, lie,...
~ D/)"r'l1J 111 ~ lb ~ <>- {;' (3...811) € 3E1S¢. Tk-...

~li. f3.])IIO{L e ~ ~ · £.. : E ~ .

~ ~ k... it.. Se.<--E ~ C'" ""~ Cct-- L. ~ .. ~
L-f~~~'

DEVELOPMENT PAC EDITOR PAGE 34

EDITOR COMMANDS

The editor commands, which were summarized
previously, give the user many capabilities in the
manipulation of source files. Following is a description of
each command including command format, operation, possible
restrictiops, and editor errors, if any.

==
B command

==
The format for this command is

B
The command may be on the same command input line with other
commands, and there are no positional restrictions. The
command will also work if a decimal number is on the line
before the command letter, but the number has no effect.
The result of this command is that the line pointer is moved
to the beginning of the buffer. If it is already there,
nothing happens. This command is important because the
operation of the other commands only moves the pointer
forward, if at all. This is the only way to move the
pointer backward in the buffer.

==
"<CR> command

==
The format for this command is

n<CR>
where n is a decimal integer in the range 0 <= n <= 65535.
If n=O or isn't included before the command, n=1 is assumed.
This is the same for all commands that use the value n.
(NOTE: If either the single quote character or the @
character is entered on a command input line where a number
could be entered, they will be interpreted as decimal digits
with the values 247 and 9 respectively.) The <CR> command
must be the only command in a command input line.
Otherwise, it is assumed to be just a delimeter for the line
and n is ignored.

This command moves the buffer pointer forward n
lines in the buffer with no effect upon the text. The line
that the pointer is left pointing at is displayed via the
:CO channel. If the value of n is too large relative to the
number of lines in the buffer, the pointer points to the end
of the text buffer and nothing is displayed.

DEVELOPMENT PAC EDITOR PAGE 35

==
I command

==
The format for this command is

I<CR>
lines of source delineated by <CR>'s
<ESC>

The command may be on the same command input line with other
commands, but it should be the las·t command on the line.
Anything entered in the command input string after the
command letter and before the <CR> is ignored. The <ESC>
character is entered by the user to terminate the command
and it must be the only character entered on.its line. This
prohibits insertion of anything but entire lines delineated
by <CR>'s.

The lines of source entered on lines after the
command letter's line and before the line containing <ESC>
are inserted into the text buffer before the current line
pointer position. This position doesn't change. As each
line is entered through the :CI channel, the editor makes
sure there is room in the buffer for it. If a line is
entered to be inserted that would cause the buffer to
overflow, the editor ends' the insert command, does not
insert ANY of that line, and sends a message via'the :CO
channel letting the user know the text buffer is full. If
the user wishes to continue insertion, lines will first have
to be removed from the buffer.

===~==================
f\. D command

==
The format for this command· is

nD
where n is as defined above in the explanation of the <CR>

,command. This command may appear anywhere in a command
input line. This command deletes n lines from the text
buffer starting with the current line1 the current line is
defined as the line that the line pointer is presently
pointing to.. The pointer is left pointing to the first
undeleted line after what was the current line before the
command was executed. If the value of n is larger than the
number of lines available to delete, the lines that can be
deleted are deleted and the pointer is left positioned at
the end of the buffer.

DEVELOPMENT PAC EDITOR PAGE 36

==
n T command

==
This command's format is

nT
command displays,

the buffer starting
position and the

too large, only the

where n is as previously defined. This
via the :CO channel, the next n lines in
with the current line. The line pointer
buffer state remain unchanged. If n is
lines available to di~Pl~Ye' e shownw

{)A.e 'l-Cf T -t;-~ S~ ~
========================== ================================

R command
==

This command's format is
nR

This command causes the next n unprocessed source lines to
be read into the buffer. These lines are taken from the :SI
channel and are placed at the end of whatever text is
already residing in the buffer RM1. The line pointer
position remains unchanged.

If the <ETX> character (03H) defining the end of the
source input file is found, the read command is terminated.
If the <ETX> character has already been found during a
previous read command, the command has no effect.

If the value of n is too large relative to possible
buffer size, lines are read in until there are only about
three lines worth of space left available in the buffer.
After the last full line has been read in, the Editor
outputs through the :CO channel a message letting the user
know the buffer is full. The extra bytes not filled are
available to the user if line insertion is necessary,
although not too many lines can be inserted before the
buffer becomes completely full.

==
W command

==
The format for this command is

nW
This command causes the first n lines in the text buffer to
be written out via the :so channel. The line pointer
position is not changed and neither is the state of the
buffer. If n is larger than the number of lines in the
buffer, the entire buffer is written out. The user has the
option of deleting the lines after they are written out by
using the D command.

DEVELOPMENT PAC EDITOR PAGE 37

==
E command

==
The format for this command is

E<CR>·
This command must be the only command on the line. It will
work if there is an integer on the line directly before it
although the number has no effect. If there are other
commands on the line, the E command is ignored as are any
other commands on the line that were entered after the E
command. This is so that the user doesn'tinadvertantly
exit from the editor.

This command ends the editing session and exits the
Editor. First, the buffer contents are written out through
the :SO channel. If the <ETX> character defining the end of
a source input file has not yet been found, characters are
then read from the :SI channel and written to the :50
channel until an <ETX> character is found. All the
unprocessed source lines are written out as is. If there is
no source input 'file, the dummy driver, :BI, should have
been assigned to the :51 channel. This driver just sends
out <ETX> characters. After the output file is closed, the
Ed~tor writes out an ET~ character (03 hex) to the output
file and returns control to DDT80.

DEVELOPMENT PAC EDITOR PAGE 38

AN EDITING EXAMPLE

A typical editing session consists of either
creating a file or updating one. Examples of both will be
shown here. First, creating a file will be demonstrated.
Recall that the Editor's prompt is displayed by the Editor
and is not entered by the user; when it appears in the
following examples, it can be assumed that the Editor output
it. The same goes for DDTSO's prompt, the period. When
displaying what the user is entering, non-printable
characters are shown in <>'s. When showing the :CO display,
exactly what the user would see is shown.

For this example, the Sorcerer is to be assigned to
the console channels, the dummy driver, :BI, should be
assigned to the :SI channel, and cassette unit # 1 is to be
assigned to the :SO channel. The user first turns on the
Sorcerer with the Development Pac inserted. The following
will then appear.

EXIDY Z80 DEVELOPMENT PAC
COPYRIGHT (C) 1979

The I/O drivers are assigned:
.M :CI<CR>
:CI :SK <CR>
:CO :SV <CR>
:01 XXXX <CR>
: 00 XXX X <CR>
:SI XXXX:BII\
:SI :BI <CR>
:SO XXXX :011\
:SO :01 <CR>
FF2A xx •

The user then calls the Text Editor:
.E :ED<CR>

and the Editor signs on:
*

The user is going to create a file containing a small
subroutine, so the code is inserted as follows:

*I<CR>
; <CR>
;THIS SUBROUTINE DETERMINES IF THE ASCII<CR>
; CHAR. IN A IS A LETTER. ON RETURN, IF<CR>
;IT IS, A'S CONTENTS ARE UNCHANGED. IF<CR>
;NOT, A WILL CONTAIN ZERO.<CR>
ALPHA<TAB>EQU<TAB>$<CR>

DEVELOPMENT PAC EDITOR

<TAB>CP<TAB>OSBH<CR>
On the next line, the user enters the wrong code:

<TAB>JRNC

PAGE 39

and corrects it with the line editing capabilities. Two
SHIFT/RUB's are entered:

<TAB>JR
and the user continues:

<TAB>JR<TAB>NC,NOAL-$<CR>
<TAB>CP<TAB>041H<CR>
<TAB>RET<TAB>NC<CR>
<TAB>XOR<TAB>A<CR>
<TAB>RET<CR>
<ESC>

The pointer is now positioned at the end of the buffer. The
user will generally want to check and see if the code
entered is correct. The pointer must then be moved to the
beginning of the buffer so the buffer contents can be
displayed. By using a large value for n, the use~ can
insure that the entire buffer contents are shown. The user
enters:

*B200T<CR>
and the Editor responds with the following:

iTHIS SUBROUTINE.DETERMINES IF THE ASCII
iCHAR. IN A IS A LETTER. ON RETURN, IF
iIT IS, A'S CONTENTS ARE UNCHANGED. IF
iNOT, A WILL CONTAIN ZERO.
ALPHA EQU $

CP 05BH
JR NC,NOAL-$
CP 041H
RET NC
XOR A
RET

The user is satisfied and leaves the Editor writing the
Editor buffer out to cassette unit # 1 through the :SO
channel:

*E<CR>
REWIND CASSETTE. HIT ANY KEY WHEN READY.<CR>

After the program has been assembled, the user realizes
that a label was forgotten. This example will show a file
being updated. First, the :SI channel assignment is changed
to cassette unit # 1 and the :SO channel assignment is
changed to cassette unit # 2:

.M :SI<CR>
:SI :BI :I1/\
:SI :I1 <CR>
:SO :01 :02/\
:SO :02 <CR>
FF2A xx •

Then, the user enters the Editor again:

DEVELOPMENT PAC EDITOR PAGE 40

.E :ED<CR>
The file must be brought into the buffer from cassette unit
1. A large value is used for n to insure all source
lines are read in:

*200R<CR>
REWIND CASSETTE. HIT ANY KEY WHEN READY.<CR>

The buffer pointer, unchanged by the R command, is
positioned at the beginning of the buffer, but the line that
needs to be corrected is the eleventh line. The pointer
must be moved:

*10<CR>
and the Editor responds:

XOR A
Now, the *~~~~R;s deleted an~, e~,~j;td ~~~"J? properly:

NOAL<TAB>XOR<TAB>A<CR>
<ESC>

The user checks the line by positioning the pointer before
the line again and displaying it. Remember that after
insertion, the pointer was positioned after the inserted
line.:

*B<CR>
*10<CR>
NOAL XOR A

The user writes the entire buffer out to cassette unit # 2
and exits:

*500W<CR>
REWIND CASSETTE. HIT ANY KEY WHEN READY.<CR>
*E<CR>

Normally, it isn't necessary to write out the buffer before
leaving the Editor, but this was done here for purposes of
example.

DEVLOPMENT PAC ASSEMBLER PAGE 41

ASSEMBLER

The Development Pac has a powerful zao Relocating
Assembler which, in conjunction with the Text Editor and
Relocating Linking Loader, provides the means for editing,
assembling, and loading zao assembly language programs.
The zao Relocating Assembler reads zao assembly language
source code and outputs an assembly listing and object code.
The Assembler recognizes all standard zao source mnemonics
and supports global symbols and relocatable programs. The
object code is industry standard hexadecimal format modified
for relocatable, linkable assemblies. The Assembler with
the Text Editor and the Relocating Linking Loader provide
the user with state-of-the-art software for building,
assembling, and loading zao programs. The zao Relocating
Assembler can assemble any length program, limited only by
the symbol table size. This is determined by the size of
RAM in the Sorcerer the Pac is being used with. A little
less than one-fourth of the Sorcerer's RAM is available to
be used for the symbol table.

DEVLOPMENT PAC ASSEMBLER PAGE 42

BASIC DEFINITIONS

There are a few terms used quite often when
discussing the Z80 Relocating Assembler that the user must
understand in order to facilitate proper usage. These will
be explained here.

The term "module" is often used interchangably with
the term "program," and both refer to a unit of code that is
either worked with or produced by the Editor, the Loader, or
the Assembler. A source module is the user's source
program, lines of text created by the Text Editor and output
upon exit from it. Each source module is assembled into one
object module by the Assembler. The end of a source module
is defined by an ETX character (03H). An object module is
produced by the Assembler from a source module. Each object
module contains machine code, linking information, address
and relocating information, and checksum information (all in
ASCII) that is used by the Relocating Linking Loader. A
description of its format can be found in Appendix A. A
load module is the binary code of one complete program. It
is created by the Relocating Linking Loader from one or more
object modules and is generally defined in RAM.

When working with groups of relocatable modules, as
opposed to single absolute modules, much more significance
is attached to symbols and their usage. A local symbol is a
symbol in a source module that appears in the label field of
a source statement. That symbol is given an offset into the
module by the Assembler when the module is assembled. The
symbol can be used within that module, obviously, but it can
also be used by other modules.

This is brought about by global definition which
occurs when a symbol appears in the operand field of the
assember pseudo-op GLOBAL in a source module. Note that a
symbol does not necessarily have to be a local symbol in a
source module in which it is given global definition. Any
symbol which is made a global symbol within a source module
will appear in the corresponding object module. If a symbol
is defined as a global symbol in some or all object modules
in a group of modules that will be loaded together, it can
be used within each corresponding source module. When all
the object modules are loaded by the Relocating Linking
Loader, all references to global symbols from modules in
which those symbols were not local symbols will be resolved
as the symbols are specifically defined. Global symbol
handling is discussed further in the section on Global
symbols.

, Two terms are used to differentiate between global
symbols that are local symbols within a source module and

DEVLOPMENT PAC ASSEMBLER PAGE 43

global symbols which are only referenced within a source
module. An internal symbol is a global symbol which is a
local symbol in the source module being referred to. When
the corresponding object module is loaded by the Relocating
Linking Loader, the internal symbol will be defined and
relocated, or given a specific value relative to the offset
into the module given it by the Assembler. Internal symbols
are assumed to be addresses, not constants. When discussing
a different source or object module in which the' symbol is a
global symbol, the symbol is called an external symbol. An
external symbol is not a local symbol in the source module.
When the object module is loaded, along with the module to
which the symbol is internal, the reference to the symbol is
resolved. Note that external symbols may not appear in an
expression 'with operators or as the operand of an EQU
pseudo-op in a source line.

Just as there are different types of symbols when
using a relocatable assembler, there are different types of
modules or programs. A position independant program is one
written in such a way that it may be placed anywhere in
memory and still run properly. No relocating information is
needed in the object module, although it may be there
anyway. An absolute program is one in which there is no
relocation information in the object module. The
declaration of a program as absolute through the use of the
Assembler pseudo-op PSECT means by definition that no
relocation information will appear in the object module. An
absolute program mayor may not be postition independant; if
it isn't, it can only be loaded in one place in memory in
order for it to run properly. A relocatable program has
extra information in the object module which allows the
Relocating Linking Loader to place the program anywhere in
memory. A relocatable program also mayor may not be
position independant, but because of the relocation
information in the object module, it doesn't matter which it
is. More on relocatable and absolute module handling can be
found in the section on Absolute and Relocatable Modules. A
linkable program is one in which the object module contains
·data about internal and external global symbols. The loader
uses this to connect, resolve, or link external references
to internal symbols in modules. A linkable program may be
either absolute or relocatable and either position
independant or not. Linking is discussed in more detail in
the section on Global Symbols

In reference to the Z8D Relocating Assembler itself,
there are some ideas which the user should be familiar with.
Especially important is the concept of a two pass assembler,
which this assmebler is. The term "two pass" refers to the
fact that the Assembler scans each source module that it
assembles twice. Each scan is known as a pass. During the
first pass, space is allocated in the symbol table for all
symbols used in the module. Relative offsets, in relation

DEVLOPMENT PAC ASSEMBLER PAGE 44

to the first byte of the object module produced, are
provided in the symbol table for local symbols. A linked
list is created for each external global symbol in the
module with the beginning of this list placed in the symbol
table. During the second pass, using the data picked up
during the first pass, the Assembler decodes opcodes,
operands, and expressions. This is why external global
symbols cannot be used in'expressions; only a linked list,
and no relative offset, is provided for these symbols and
the relative value of the expression cannot be determined.
As the assemler assembles each line of source code, it
maintains a program counter that counts each byte of object
code produced. It is assigned a starting value of zero and
can be altered at anytime by the ORG pseudo-op, explained in
the section on Pseudo-ops. The Assembler also creates the
object module and produces a listing during the second pass.
Recall this information when pass one or pass two of the
Assembler is discussed later.

DEVLOPMENT PAC ASSEMBLER PAGE 45

ASSEMBLY LANGUAGE SYNTAX

An assembly language program, or a source module,
consists of labels, opcodes, pseudo-ops, operands, and
comments in a sequence which defines the user's program.
The assembly language conventions are discussed here.
First, though, a quick mention should be made of delimeters.
Labels, opcodes, pseudo-ops, and operands must be separated
from each other by one or more ASCII commas or spaces. An
easy way to insert spaces is to use the TAB/SKIP which moves
the curser to a tab stop and fills in the "spaces" jumped
over with ASCII spaces. The ASCII <TAB> character itself is
not used in order that source modules produced by the
Development Pac be more compatible with other zao
assemblers. Comments are delineated from the rest of the
elements on a line by a semicolon. The following
illustrates the source code format:

==
(label) opcode operand (,operand) (i comment)

==

A. Labels
A label is composed of one or more characters. Only

the first six characters of a label with more than six
characters are recognized by the zao Relocating Assembler.
The characters used in a label cannot be any of the
non-printable ASCII characters, an ASCII blank, or any of
the following characters:

, () * + , - < >= /: i
In addition, the first character of a label cannot be a
decimal digit. All labels must begin in colum"n one. No
colon should be used after the label. Some examples of
valid and invalid labels are shown:

VALID

LAB
L923
$23

9 LAB
L)AB
L:ABC

INVALID

iSTARTS WITH A DECIMAL DIGIT
iILLEGAL CHARACTER IN LABEL
iILLEGAL CHARACTER IN LABEL

A label may be used on any line in the source
module. The relative value assigned to the label, assuming
it is not before an EQU pseudo-op, is that of the current
program counter.

OEVLOPMENT PAC ASSEMBLER PAGE 46

B. Opcodes
There are 74 opcodes, such as "LO"; 25 operand

keywords, such as "HL"; and 693 legitimate combinations of
opcodes and operands in the zao instruction set. The full
set of these opcodes is briefly documented in the zao-cpu
Technical Manual and is fully documented in the ZaO-Assembly
Language Programming Manual, both published by Zilog, Inc.,
Cupertino Ca. The zao Relocating Assembler allows one other
opcode which isn't explicitly shown in the Zilog
pUblications:

LABEL IN F,(C)
This instruction sets the zao CPU condition bits in the "F"
flag register according to the contents of the port defined
by the C register.

C. Pseudo-ops
The Z80 Relocating Assembler recognizes seven

pseudo-os. These appear in the opcode field of a sourc~
statement. Labels for these source lines are optional for
all of the pseudo-ops except one. They do not necessarily
generate object code, as all opcodes do, but can cause
certain values to be loaded into certain bytes or can
reserve bytes. All the pseudo-ops direct the Assembler to
cause some action to occur.

One of the pseudo-ops which was already mentioned is
the PSECTpseudo-op which has the following format:
=================== (label) PSECT opr ====================
where opr is the operand. This pseudo-op defines a program
section as absolute or relocatable. The pseudo-op should
appear before any source lines which can be assembled into
object code and should appear only once in any source
module. If not included in a source module, the module is
assumed to be relocatable. For an absolute module, opr=ABS;
and for a relocatable module, opr=REL.

Another pseudo-op already mentioned is the ORG
pseudo-oPe The format of this pseudo-op is
==================== (label) ORG nn ====================
where nn is a sixteen bit value. This sets the program
counter to the value nne When used in an absolute module
before any source code which can be assembled to produce
object code, ORG determines the starting address for the
program. In a relocatable program, ORG provides a base
address that can be given an offset when it is loaded.
There can be more than one ORG pseudo-op in a source module.
This is useful for look-up table placement on even boundries
or separating variable RAM areas from program areas. If a
source module contains no ORG pseudo-ops, the program
counter is set to zero at the beginning of the assembly.

DEVLOPMENT PAC ASSEMBLER PAGE 47

Another pseudo-op which has already been discussed
is the GLOBAL pseudo-op with the format
================== (label) GLOBAL symbol ==================
The GLOBAL pseudo-op defines as global the symbol which is
~its operand. Any symbol referenced from a source module to
which it is not local must be defined as global, both in the
source module where it is a local symbol and in the modules
to which it is an external symbol.

A pseudo-op can be used to assign a value to a
'label., This is the EQU pseudo-op and has the format
==================== label EQU nn ==================== (~Alo'r
where nn is a sixteen bit value. The unrelocated value of
the label is nne Tfie- label cannot be redefined by another EOOA~
EQU pseudo-op or by appearing in the label field of another <t~gI'7 13fT&.
source statement in the source module. If the label is a
global symbol, this restriction also applies to occurances
of the symbol in any module which will be loaded with the
module where the label is EQUated. The value of that label,
a global symbol, is relocated even though it appears as a
constant.

Particular bytes within a program can have their
contents determined by one of two pseudo-ops, as opposed to
having their contents determined by the assembling of a
source line and the resultant object code. The first of
these is the DEFB pseudo-op which has the following format:
==================== (label) DEFB n ===================== ~~ ~~
The value n is an eight bit value which becomes the contents eJ,c.t.~,·

J of the byte located at the current program counter value. ~
Note that this program counter value is the unrelocated ~ ",~~~
value for the location. The other pseudo-op is ;-1J4. "'- ''''>(.11)

==================== (label) 'DEFW nn ====================~----,----,-,--,---,--,'-------
where nn is a sixteen bit value. The least significant bits (1 <:t:":e."!-rJ-'"

of the value nn are loaded into the byte at the program AS<'I(" /~
counter address and the most significant bits are loaded ~
into the byte located one after the byte at the current
program counter. These two bytes together comprise what is
termed a "word." Recall that an offset may be later added
·to this program counter value when the object module is
loaded. These pseudo-ops are useful for constructing tables
and ASCII messages.

If the user wishes to use a certain area of RAM but
does not wish to initialize it with values, the DEFS
pseudo-op can be used. The format is
==================== (label) DEFS nn ====================
where nn is a sixteen bit value. Using this pseudo-op
reserves nn bytes of memory starting at the current
(unrelocated) program counter value by addingnn to the
program counter.

The following is a summary of the Z80 Relocating
Assembler pseudo-ops:

DEVLOPMENT PAC ASSEMBLER PAGE 48

PSEUDO-OP

(label)
(label)
(label)
label
(label)
(label)
(label)

PSECT
ORG
GLOBAL
EQU
DEFB
DEFW
DEFS

D. Operands

opr
nn
symbol
nn
n
nn
nn

FUNCTION

define module as ABSolute or RELocatable
origin-set program counter to nn
define global symbol
equate-set value of label to nn
define byte contents as n
define word contents as nn
define storage for nn bytes

There may be zero, one, or two operands present in a
source statement depending on the opcode or pseudo-op used.
An operand can take one of the following forms:- a generic
operand, a constant, a label, the "$," or an expression.

A generic operand is a keyword that has special
meaning to the Assembler. These keywords are recognized as
having only one meaning and should not be used as labels.
The following is a list of these operands and their
meanings:

OPERAND

A
B
C
D
E
F
AF
AF'
BC
DE
HL
SP
$
I
R
IX
IY
NZ
Z
NC
C
PO
PE
P
M

MEANING

A register (accumulator)
B register
C-register
D register
E register
F register (flags)
AF register pair
AF' .register pair
B.c register pair
DE register pair
HL register pair
stack pointer register
pro ram counter
I reg1ster 1nterrupt vector MS byte)
refresh register
IX index register
IY index register
not zero
zero
not carry
carry
parity odd/not overflow
parity even/overflow
sign positive
sign negative

OEVLOPMENT PAC ASSEMBLER PAGE 49

A constant used as an operand must be in the range 0'
through OFFFFH or 0 through 65,535. There are five types of
constants, but the default is decimal. A number can be
denoted as decimal by following it with the letter "0".
Hexadecimal constants must start with a digit from 0 to 9
and end with the letter "H". Octal constants must end with
either of the letters "0" or "0". A binary constant muetend
with a "B". ASCII constants are characters enclosed in
single quotes and will be converted to their equivilent
value ('~'=041H).

Labels may be used as operands with some
limitations. The label must either appear elsewhere in the
source module or be an external global symbol defined as
such in the source module by a GLOBAL pseudo-ope Labels
cannot be defined by labels which have not yet appeared in
the user program. This is an inherent limitation of a two
pass assembler. Labels also cannot be defined by external
global symbols. If an external global symbol is used as an
operand, it cannot be part of an expression using operators.

I
H
L

ALLOWED

EOU
EOU
EOU

7
I
H

L
H
I

NOT ALLOWED

EOU
EOU
EOU

H
I
7

The symbol "$" can be used as an operand. It
represents the value of the program counter at the current
instruction.

The Z80 Relocating Assembler accepts a limited group
of expressions as operands in a source statement. Integer
two's complement arithmetic is used. All expressions are
evaluated from left to right although parenthesis can be
used to insure correct expression evaluation. Note that
enclosing an entire expression in parenthesis denotes a
memory address. The contents of the location equivalent tq
the expression is used as the operand. There can be any
number of terms in an expression. The following are the
allowed operators:

OPERATOR MEANING

+ unary plus
two's complement unary minus

+ addition
subtraction
shift right eight with zero fill

LE(9fTA-~b-rt EItI'1PL p-~
\)1:1= FS) 21 +- ~/-I >"

II S-IJ# .J80H ~

/' ¢JJlJli ~

DEVLOPMENT PAC ASSEMBLER PAGE 50

Here are examples of how some expressions using
these operators are evaluated:

-5 = OFFFBH
+5 = 0005H
-5-(4+1) = OFFF6H
OAABBH = OAABBH
OAABBH. = OOAAH

The allowed range of an expression depends upon
where it is used. If this range is exceeded, an error
message is generated. Usually, the limits on this range are
o through OFFFFH. The limits on the range of a relative
jump, "JR," are -126 through +129 bytes. When using
relative addressing, the current value of the program
counter must be subtracted from the label if the branch is
to be made to that label address. For example,

NAME JR NC,LOOP-$
will transfer control to the location "LOOP."

For relocatable programs, the Assembler will output
relocation information in the object module for all
addresses which are to be relocated by the Relocating
Linking Loader. The following rules are used to determine
if an expression is a relocatable address or a
non-relocatable constant; C stands for constant, *
represents an operator, and R stands for a relocatable
value.

C * C=C
C * R=R
R * C=R
R * R=C

Shown are examples of these rules in use:

I EQU
DEFW

LAB EQU

•

JP
JR
JR

1
I
$

LAB
LAB-$
+5+ (I)

:CONSTANT DEFINITION
:NON-RELOCATABLE CONSTANT
:RELOCATABLE DEFINITION

;RELOCATABLE OPERAND
:CONSTANT OPERAND
;CONSTANT OPERAND

It should be mentioned once again that external
global symbols connot be used in expressions. External
symbols are considered to be relocatable address constants
in relocatable programs.

DEVLOPMENT PAC ASSEMBLER PAGE 51

E. Comments
A comment is defined as any characters following a

semicolon in a source line and can begin in any column.
Comments are used to document source code. They are ignored
by the Assembler, but are output in the listing. Note that
a semicolon within single quote marks is treated as an
expression, not a commentdelimeter.

DEVELOPMENT PAC ASSEMBLER PAGE 52

ABSOLUTE AND RELOCATABLE MODULES

A module is defined as absolute by the pseudo-op
(label) PSECT ABS

An absolute object module will be loaded by the Relocating
Linking Loader at the exact addresses at which it is
assembled. This is useful for software drivers whose
positions must always be known, constants, or common blocks
of global symbols. A list of global constants can be
defined, as shown, and the global symbols will have constant
values that may be used by other modules.

VIDEO
KEYBRD
INTAPE
OUTAPE

PSECT
GLOBAL
GLOBAL
GLOBAL
GLOBAL
EQU
EQU
EQU
EQU

ABS
VIDEO
KEYBRD
INTAPE
OUTAPE

OE01BH 1 OE018H
OEOOFH
OE012H

Modules default to relocatable if
(label) PSECT ABS

is not used or if
(label) PSECT REL

is specified. During loading, only sixteen bit address
values will be relocaeed. No eight bit quantities, whether
derived from sixteen bit address values or not, ·will be
relocated and neither will sixteen bit constants that aren't
internal global symbols. All internal and external global
symbols will be relocated. Labels equated to labels which
are constants will be treated as constants while labels
equated to labels which are relocatable will be relocated.
The sample program may help in understanding these
principles.

ONE

TWO

THREE

FOUR

EQU
LD
EQU
LD
LD
LD
EQU
LD
EQU
LD

OA13H
A, (ONE)
$
A, (TWO)
A,TWO
A, (IX+TWO)
ONE
A, (THREE)
TWO
A, (FOUR)

iABSOLUTE VALUE
iONE NOT RELOCATED
iRELOCATABLE VALUE
iTWO WILL BE RELOCATED
iTWO NOT RELOCATED (8 BIT VALUE)
iTWO NOT RELOCATED (8 BIT VALUE)
iABSOLUTE VALUE
iTHREE NOT RELOCATED
iRELOCATABLE VALUE
iFOUR WILL BE RELOCATED

DEVELOPMENT PAC ASSEMBLER PAGE 53

GLOBAL SYMBOLS

When using a relocating assembler, not only is the
concept of relocation important to understand, but s6 are
the principles of linkage and how they relate to global
symbols. Linkage refers to the process of resolving global
references between object modules. To review, a global
symbol is one that can be referenced by 'more than one
source or object module. It is given a relative offset into
the module in which it is a local symbol by the program
counter during assembly and can be used by that and any
other module in which the symbol is defined as global. The
symbol is an internal global symbol in the module in which
it is a local symbol and an external global symbol in any
other modules that refer to it.

When object modules are loaded together by the
Relocating Linking Loader, all global symbol references are

'" . resolved. Each locat1on where an external global symbol is
used is modified to' the value of the corresponding internal
symbol. This is linking. The use of global symbols and
linking allow large programs to be broken up into smaller
modules.

The object modules. produced by the Z80 Relocating
Assembler contain the information that the Loader uses.
Knowledge of how' the Assembler handles global symbols is
therefore necessary to obtain proper relocation and linkage.
During pass 1, the Assembler recognizes and defines symbols
so indicated as global and builds up an external reference
link list. For relocatable assemblies, all references to an
external global symbol except the first reference in a
module are marked relocatable. The object code produced by
the Assembler during pass 2 for these references is actually
a backward link list terminating with the constant OFFFFH.
All internal global symbols are always marked relocatable,
except in absolute assemblies, and will be relocated even if
they look like ·constants. The example demonstrates this
point.

YY

PSECT
GLOBAL
EQU
LD

REL
YY
OAF3H
A, (YY)

iRELOCATABLE MODULE
iINTERNAL SYMBOL
iYY ALWAYS MARKED RELOCATABLE
;YY WILL BE RELOCATED WHEN LOADED

If the module was absolute, YY would be an absolute value.
I\t,{), Both internal and external global symbols in a relocatable
,~tI assembly are always considered relocatable sixteen bit
~ addresses.
~ (.. Because of the way global symbols are handled by the
GuJ&~

O~~~
~r.~

/V

I\t) f/S T ~ E CO "",e. ~ fr-re. ~ L.. \...;" 1\1 fJN'- A..~&. \-. Of. "wr~f.> '" e. Cft..OI!>~1/ ~ y"'t.&c:'c.s

IN fttV n~SOc...r.Jrc. (tAC!Jt)Llt..E. , C~-N IYOT ?be iOA-!)Ef)
13>£ Tw£ e IV 'Jt-.£ t.. Oc. frT ~'f.J /...8.... tv\ tJ D uJ.r e-s ~ fi1Tfl£1I- c FI/J.S{ ~ (L.\sG6'IJ~""T£~

DEVELOPMENT PAC ASSEMBLER PAGE 54

Assembler, there are some rules and limitations associated
with their usage. The syntax rules ~pplicable to labels are
also applicable to global symbols. In a group of object
modules that are to be loaded together, there can be no
duplication of internal global symbol names. An internal
symbol can be a local symbol in a source module only once in
a set of modules that eventually will be loaded together.
Because external global symbols are always considered to be
sixteen bit addresses, they cannot appear in instructions
requiring eight bit operands. External symbols, as
mentioned before, cannot appear in an expression with
operators either. An external global symbol also cannot
appear in the operand field of an EQU pseudo-oPe The
following examples help show the restrictions on external
symbols.

GLOBAL SYM iEXTERNAL SYMBOL
LD A,SYM iCANNOT BE USED AS 8 BIT CONSTANT
LD (IX+SYM) ,A iCANNOT BE USED AS A DISPLACEl1ENT
LD HL, (SYl-1) iLEGAL
LD HL,SYM+25 iCANNOT BE IN AN EXPRESSION

SYMl EQU SYM iCANNOT BE OPERAND OF "EQU"

DEVELOPMENT PAC ASSEMBLER PAGE 55

ASSEMBLER I/O AND OPERATION

Before the user calls the Assembler, the I/O channel
assignments must be properly set up. The section on DDTaO
describes how this is done.

The zao Relocating Assembler uses every I/O channel
except the object input channel (:OI). The Assembler and
the user communicate basic information via the console
channels; the user calls the Assembler through the console
input channel (:CI) and any messages to the user regarding
I/O or abort errors are'sent by the Assembler through the
console output channel (:CO).

The object module produced by the Assembler for each
source module is output via the object output channel (:OO).
The format of this object code is described in Appendix A.
This output can be loaded by an Intel hexadecimal loader for
non-linkable, non-relocatable programs. Extra information
is output in the object modules for relocatable and/or
linkable programs for use by the Relocating Linking Loader.

The source input channel (:SI) is the channel
through which the zao Relocating Assembler reads the user's
source module. As mentioned before, the Assembler is a two
pass assembler and therefore must scan the source module two
times. If an external device, as opposed to a RAM buffer,
is used for the :SI channel, the user will have to send the
module to the Assembler twice. For example, if a cassette
unit is assigned to the :SI channel, the user will have to
rewind the tape after the first pass of the Assembler so it
can be scanned a second time.

The assembly listing is output by the Assembler
through the sourc' output channel (:SO). If the user wishes
to obtain columns between fields in the listing, the
TAB/SKIP key should be used to insert spaces when the source
module is created via the Text Editor. The relative val~e'
of ~qc9.,.~Q!l.~~~~~~:~~-pol in the listing is prl.nted 'w1th~' a
pointer, ">" , next to it. ,Any relocctt?J?~.-,..,,-S!Q.9I ... ~s "gr
operand .. iL~ident~t:,i",ed," ... ,.J~Y t~ ,s.inale qu~1;~CJ::l~g.~9.ter. The
statement numbers are printed l.n ecimal. If the user
wishes to assemble a source module with no listing, any
valid output device except the Centronics printer (:CE) may
be assigned to the :SO channel.

DEVELOPMENT PAC ASSEMBLER PAGE 56

Here is an example of how the I/O channels could be
set up fora cassette based mode of operation: II _ V\A I JL

6~C~~IVt~

:CI=:SK
:CO=:SV

F~ ~-""-~-lf~~-~

:00=:02
:SI=:I1
:SO=:CE

~ ()O

;~J

:50

;01

!BO
'sV I

The user and the Z80 Relocating Assembler communicate via
the Sorcerer keyboard and video display. The source module
is read in from cassette unit # 1 and the object module is
output to cassette unit # 2. The Assembler listing is sent
to the Centronics printer.

Suppose the user was working in the RAM-based mode
of operation. The channels would be set up as follows:

:CI=:SK
:CO=:SV
:OO=:AI
:8I=:BO
:SO=:SV

As before, the Sorcerer is used for the console channels.
The source module is read directly from the text buffer of
the Text Editor, :BO. The object module is output to the
object buffer of the Assembler, :AI. The listing is output
to the Sorcerer Video Driver.

This table shows what devices can be assigned to
each~of the I/O channels the Ass~embler uses:

01.1 £Co" ~ &

:CI :CO .·""'T :00 :SI

:11 :01 :01 :11
:12 :02 :02 :I2
:SK :SV :SV :SK
:AO :AI :AI :AO
:BO :CE :CE :BO

:01
:02
:SV
:AI
:CE

Appendix C describes what each device symbol represents.
To call the Z80 Relocating Assembler, the user

enters, via the console input channel, the following:

.E :AS

When the Assembler is finished, control is returned to
DDT80.

; C£

DEVELOPMENT PAC ASSEt1BLER PAGE 57

ASSEMBLER ERRORS
<

The Assembler detects thirteen errors. Each error
has a sihgle letter abbreviation. One of these is an abort
error. This means th~t the Assembler operation is aborted
any time this error is detected, control is returned to
DDT80 immediately, and a message is sent via the console
output channel:

ABORT F
For all other errors~ the letter abbreviation is printed in
the left margin of the assembly listing next to the
statement which is in error.
o '>0000 0012 LABEL LDR A,6 iOPCODE ERROR
Following is a list of the Assembler errors:

B - In an expression, an operator exists which does not
belong. Thi~ usually refers to a trailing operator.
- D - In a number that is used as an operand in the source
statement, there is a digit of the wrong base or a character
which is not allowed. -

E - In the source statement, an !xternal global symbol
is being used in an expression with operators or as the
operand of an EQU psuedo-op, or as the operand where an 8
bit value is required.

F - The symbol table is full as a result of too many
symbols being defined. This-is an abort error.

I - There is an operand or combination of operands that
is invalid for the given opcode in the source statement.

-L - There is an invalid character in a label 9r symbol
in the source line. This error can -also occur for
expressions when the Assembler scans for a symbol.

M A symbol appeared in the label field in more than
one source statement, or was m-Itiply defined.

N - There is no label, as- is required, in the label
field of an EQU pseudo-ope

o - There is an invalid opc.ode in the source statement.
R - For the given opcode in" the source statement, there

is an operand whose value is out of the allowed range. This
often occurs for a "JR" instruction where the operand is too
large.

S - There is a syntax error in an expression in the
source line. Usually this refers to unbalanced parenthesis
or quotes, or extra characters in the expression.

U - A symbol used in an expression is undefined. This
will occur when a symbol is defined in terms of a local
symbol that hasn't appeared yet in the source module, a
limitation imposed by a two pass assembler.

V - An expression caused an overflow error in the Z80
CPU when it was evaluated.

DEVELOPMENT PAC LOADER PAGE 58

LOADER

The Development Pak has a Relocating Linking Loader
which will load and link both relocatable and
non-relocatable, or absolute, object modules produced by the
Z80 Relocating Assembler. The Relocating Linking Loader
enables separately assembled object modules to be linked
together and to be relocated anyplace in the user's RAM. A
large program, for example, can be created as a group of
relatively short individual modules which can be separately
assembled and debugged. They can then be combined into a
complete program when loaded.

DEVELOPMENT PAC LOADER PAGE'S9

LINKING AND LOADING BASICS

The Relocating Linking Loader automatically links
global symbols which provide communication or linkage
between progra~ modules. Recall that a global symbol is a
symbol which is defined within one program module but can be
referenced by other modules. As the object modules are
loaded, a table containing the global symbol references and
definitions is built. After each module is loaded, the
Loader then resolves all references to global symbols that
have been encountered.

The number of object modules which can be loaded is
limited only by the amount of RAM available for the modules
and the symbol table. The top 768 bytes of"RAM are used by
the Sorcerer Power-On Monitor and the Development Pak I/O
routines and under no circumstances should any modules be
loaded there. The remainder of RAM in the user's system may
be used if the user is working in a cassette based or I/O
based mode of operation.

If the user is working in the RAM-based mode of
operation, the user has several considerations to make in
deciding what areas of RAM can be loaded. The values ENDA
(In 0132 & 0133), ENDB (In 0134 & 0135) and EN DC (In 0136&
0137), which the user can determine when in DDT80; separate
the user RAM into three areas. The RAM area starting at
location ~ero and ending at ENDA (approximately one-fourth
of the Sorcerer RAN) is always free for loading. The RAM ,
between ENDA and ENDB is the object buffer (:AO) which
contains the object file to be loaded when working in the
RAM-based mode of operation. The user must be careful not to
overwrite this area when working in this mode. The RM,1
between ENDB and ENDC is the Text Editor buffer, :BO. If
the user wishes to save this area for later re-editing or
patching, loading must be restricted to the RAM below ENDA;
otherwise, this area is also free for loading.

Each object module, relocatable or non-relocatable,
is loaded in via the object input channel (:OI). The PSECT
pseudo-op of the Z80 Relocating Assembler defines a module
as relocatable or absolute. Absolute modules are never
relocated and are always loaded at their starting address as
defined by the ORG pseudo-op during assembly. Relocatable
modules are located at an offset address plus the module's
defined starting address. This offset address is the
address one higher than the last address of the previously
loaded module or, in the case of the first ~odule of a group
being loaded, is the address specified via the console input
channel (:CI) when calling the Relocating Linking Loader.

DEVELOPMENT PAC LOADER PAGE 60

LOADER SYMBOL TABLE

In the linking process, the Relocating Linking
Loader builds a symbol table of global references between
program modules and resolves these references after each
individual module is loaded. Both symbol definitions and
references are placed in this table. Space for this table
is allocated dynamically downward in Rru~ from its origin.
This origin is specified by the user when calling the
Loader. The length of this table is

(N + 1) X 11

where N is the number of unique global symbols.
Each time a module is loaded, the global symbol

table is output through the console output channel (:CO)
displaying each symbol and its address. Unknown global
symbol addresses are marked as undefined. These would occur
when symbols have appeared in the operand field of a module
but have not yet been defined. A global symbol becomes
defined when a module containing both the symbol in the
label field and a reference to it by a GLOBAL pseudo-op is
loaded.

DEVELOPMENT PAC LOADER PAGE 61

LOADER I/O

Before the Relocating Linking Loader is called from
DDTBO, the proper devices should be assigned to the I/O
channels that are used by it. How these assignments are
done is explained in the section on DDTBO.

The user and the Loader communicate with each other
via the console. All command inputs to the Loader are
received through the :CI channel. The Loader displays error
messages, the global symbol table, and the beginning and
ending address of each program module through the :CO
channel. The object modules are loaded into the system via
the :01 channel. The Loader does not use the :00, :SI, or
:SO channels.

In the cassette based mode of operation, the user
could assign the channels as shown:

:CI=:SK
:CO=:SV
: 01=: 11 (or : 12 for uni t #: 2)

< - ME

The "user and the Relocating Linking Loader communicate
through the Sorcerer keyboard and display. The object
module(s) would be loaded in via cassette unit #: 1.

In the RAM-based mode of operation, the channels
would be assigned as follows:

:CI=:SK
:CO=:SV
:OI=:AO

Again, the user and Loader would communicate through the
Sorcerer. The object module(s) here would be loaded
directly from the object buffer in RAM.

The following table shows what devices can be
"assigned to the channels the Loader uses:

:CI :CO : 01

:11 : 01 :11
:12 :02 :12
:SK :SV :SK
:AO :AI :AO
:BO :CE :BO

Appendix C describes what each of the device symbols refers
to.

DEVELOPMENT PAC LOADER PAGE 62

CALLING THE LOADER UP '70 «

After the user has set up the I/O channels in DDT80
and a module is ready to be loaded in via the :01 channel,
the Loader can be called. To enter the Relocating Linking
Loader, the user types

" . '

.L a,b<CR>

where a and b are hexadecimal addresses.
The operand a is the offset address. If an absolute

module is to be loaded, its starting address will be the
address defined by the ORG pseudo-op in the Z80 Relocating
Assembler and the offset address is ignored. If a
relocatable module is to be loaded, its starting address
will be the sum of the address defined by the ORG pseudo-op
and the offset address. The operand b is the address of the
origin of the global symbol table.

After the Loader is called, it will load the module,
display via the :CO channel the starting and ending address
for the module and the global symbol table, and return with
the Loader's prompt, an asterisk. 'If the us,er has more
modules to load, the command used is

*L

The offset address for each new module is one more than the
ending address of the last module loaded. Absolute modules
are loaded without regard to the offset address but they do
produce a new offset address for the next module.

T9 ,leave the Loader, the user just enters a eriod.
If anythi'ng":[s-""E;ntered a ter the Loa er prompt except a
period or the L command, the Loader ignores it and returns a
new prompt. Upon exiting the Relocating Linking Loader,
control is given to the Sorcerer monitor and is NOT returned
to DDT80. This is because DDT80 uses RAM areas that might
contain user loaded code. If the user wishes to renter
DDT80; use this monitor command:

*
>PP <Carriage Return>

DEVELOPMENT PAC LOADER PAGE 63

LOADER ERRORS

The R-Iocating Linking Loader detects four errors,
two of which are fatal and return control to DDT80. The
non-fatal errors leave the Loader symbol table intact
allowing the user to continue loading.

When an error occurs, the Loader displays via the
:CO channel a message:

****ERROR e

The number e indicates the type of error as shown here:

============================~===============================

e ERROR

1 checksum error
2 double definition of a global symbol
3 attempt to overwrite symbol table
4 symbol table full

CONTROL RETURNS TO:

Loader
Loader
DDT80
DDT80

==

If a checksum error occurs in a data record, as
opposed to an EOF or relocating record, the address of the
location where the last byte of that record was loaded is
displayed directly before the error message. If there were
checksum errors in more than one data record, all the
addresses will be shown. The user then has the capability
to correct the data in memory using DDT80 if so desired. If
no addresses are displayed when a checksum error occurs, the
error was detected in a non-data type record and it is
recommended that the load sequence be completely redone from
the beginning.

In the process of loading a module, if a global
'symbol definition which already existed in the symbol table
from a ,previously loaded module is encountered as a record,
the global symbol name is displayed before the error
message. Global symbols may be referenced,any number of
times but can only be defined once within any group of
modules being loaded together.

When a module is loaded and is going to be using the
same bytes that the global symbol table is using, a fatal
error occurs. The other fatal error happens when the end of
the symbol table has reached the bottom of RAM, location
OOOOH. As stated before, both of these errors cause an
abort of the loading process and return control to DDT80.

DEVELOPMENT PAC APPENDIX A PAGE 64

APPENDIX A

OBJECT OUTPUT DEFINITION

Each record of an object module begins with either a
colon or a dollar sign and ends with <CR><LF>. A colon is
used for data records and for the end-of-file record. A
dollar sign is used for records containing relocating and
linking information and for the module definition record.
An Intel hexamdecimal loader will ignore all records not
beginning with a colon and can therefore load
non-relocatable, non-linkable programs. All of the
information in these records is represented by ASCII
characters.

Following is a description of the format for each
type of record. A few terms used should be defined. A
binary byte refe·rs to one eight bit byte of data which will
be represented in a record by two ASCII bytes. Record type
refers to two ASCII bytes that represent a number indicating
the kind of record as follows:

00 - data record
01 - end-of-file record
02 - internal global symbol record
03 - external global symbol record
04 - relocating information record
05 - module definition record

Checksum refers to a method for checking the accuracy of the
data in a record. The checksum for each record is computed
by negating the binary sum of all-the bytes in the record
excluding the beginning delimeter and the <CR><LF>.

DEVELOPMENT PAC APPENDIX A PAGE 65

I. Data Record

Byte 1 Colon
2-3 Number of binary bytes of data in this

record, with a maximum of 32 binary bytes
4-5 Most significant byte of start address of

data
6-7 Least significant byte of start address of

data
8-9 Record type
10- Data bytes to be converted to binary when

loaded
Last two bytes Checksum

II. End-of-file Record

Byte 1
2-3
4-5

6-7

8-9
10-11

Colon
ASCII zeroes
Most significant byte of starting execution
address of program
Least significant byte of starting execution
address of program
Record type
Checksum

III. Internal Global Symbol Record

Byte 1
2-7

8-9
10-13

14-15

Dollar sign
Up to 6 ASCII characters of the symbol name,
left-justified, blank filled
Record type
Address of internal symbol, most significant
byte first
Binary checksum; note that the ASCII letters
of the symbol are converted to binary before
the checksum is calculated

DEVELOPMENT PAC APPENDIX A PAGE 66

IV. External Global Symbol Record

Byte 1
2-7

8-9
10-13

14-15

Dollar sign
Up to 6 ASCII characters of the symbol name,
left-justified, blank filled
Record type
Last address in module which references the
external symbol; beginning of a backward
link list in the object data records
pointing to references to the symbol and
terminated by OFFFFH
Binary checksum

V. Relocating Information Record

Byte 1
2-3

4-7
8-9
10- '

Last two bytes

Dollar sign
Number of sets of 2 ASCII characters, each 2
sets defining an address that must be
relocated
ASCII zeroes
Record type
Addresses which must be relocated, most
significant byte first
Binary checksum

VI. Module Definition Record

Byte 1
2-7

8-9
10-11

12-13

Dollar sign
Random ASCII characters and/or graphic
characters
Record type
Flag byte whose least significant bit, when
the byte is converted to binary, is zero for
absolute assemblies and one for relocatable
assemblies and is determined by the PSECT
pseudo-op
Binary checksum

DEVELOPMENT PAC APPENDIX B PAGE 67

APPENDIX B

REPARTITIONING RAM

In the section on Sorcerer I/O each of the RM1
Partitions, #1 - #4, is discussed. The beginning and ending
addresses of these Partitions are variable, depending on the
size of the Sorcerer being used with the Development Pac.
Initially each Partition is set up to use a certain amount
of RAM in the Sorcerer. For example:

PARTITION # 1 - Always uses the top 768 bytes of RM1
PARTITION # 2 - Initially set up to use approx. 1/2 of RAM
PARTITION # 3 - Initially set up to use approx. 1/4 of RAM
PARTITION # 4 - Initially set up to use approx. 1/4 of RAM

The Partitions are configured in this way to make
the most efficient use of RAM in a RM1-based mode of
operation. However, this may not be the most efficient
configuration if the user is in an I/O-based mode of
operation, wishes to increase the Assembler symbol table
size, or wishes to have a larger Editor buffer to work with.

Using the "M" command in DDT80, the user can alter
the boundaries and therefore the size of anyone of the
Partitions. As mentioned above, there are a number of
reasons for a user to want this capability:

1 • To increase the Assembler symbol table size.
2. To increase the Editor buffer size.
3. To increase the Object buffer size.
4. To reposition the stack area.
5. To move the buffer areas out of the way of

other programs.
6. To move the buffer areas out of the way of

user I/O drivers.
7. To move the buffer areas out of the way of

disk driver routines.

Before it's explained exactly how to "move" the
Partitions around in the Development Pac, it should be
mentioned that some parts of the Partitions are not
moveable! First, let's summarize exactly what each Partition
consists of:

DEVELOPMENT PAC APPENDIX B PAGE 68

PARTITION # 1
1. Power-On Monitor RAM Data area.
2. Power-On Monitor Stack area.
3. Development Pac Stack area.
4. Cassette Input Buffer.
5. Cassette Output Buffer.

PARTITION # 2
1. Editor Buffer.
2. "B" Memory buffer.
3. Free RAM if Source File is overwritten.

PARTITION # 3
1. Object Buffer.
2. "A" Memory Buffer.
3. Free RAM if Object File is overwritten.

PARTITION # 4
1. DDT80 RAM Data area.
2. Editor RAM Data area.
3. Assembler RAM Data area.
4. Assembler Symbol Table area.
S.Free RAM if DDT80 Data area is overwritten.

The boundaries of the Partitions are determined by
three values: ENDA, ENDB and ENDC. These values separate the
partitions according to the following format:

1. PARTITION # 1 = TOP OF RAM TOENDC

2. ENDC = TOP OF ~1 - 76B BYTES

3. PARTITION # 2 = EN DC TO ENDB

4. ENDB = ENDC / 2

5. PARTITION # 3 = ENDB TO ENDA

6. ENDA = ENDB / 2

7. PARTITION # 4 = ENDA TO 0100 HEX

8. 0000 TO ~OFF HEX IS FREE

Since partition #1 contains-the Sorcerer's Power-On
Monitor Data and Stack area, it should be moved by using the
Sorcerer's Monitor Reentry Point, E006 hex. By entering the
Power-On Monitor at this point, the HL register pair will be
used as the new TOP OF RAM and the Power-On Monitor will
reinitialize its data area at the now location.

DEVELOPMENT PAC APPENDIX B PAGE 69

A program for moving the Power-On Monitor Data and
Stack area would then be:

21 YY XX
C3 06 EO

LD
JP

HL,XXYYH
OE006H

The "XXYY" represents the address to which the Data
and Stack areas are to be moved. It is the "TOP" address and
space will be allocated from that location down\1ard. The
Power-On Monitor will then transfer control to the
Development Pac WARl1 start entry point. The Development Pac
will clear the screen and print a "." alone on the screen.
The Development Pac must be "RE-STARTED" after moving the
Power-On Monitor's Data area. This is because the
Development Pac uses part of the Power-On Monitor's Data
area for obtaining the TOP OF RAM address and setting up the
Cassette Buffers. The Development Pac is "RE-STARTED" by
using the DDT80 "E" command:

.E COOO <Carriage Return>

The Development Pac will sign-on again, using the
normal COLD start message, and repartition the RAM according
to the new TOP-OF-RAM address from the above program. The
user must then use the DDT80 "M" command to alter the ENDA,
ENDB and ENDC values for the "real" Partitions. The
locations to alter for the boundaries are:

ENDA = Top of Partition # 4 = 0132 & 0133 hex
ENDB = Top of Partition # 3 = 0134 & 0135 hex
ENDC = Top of Partition # 2 = 0136 & 0137 hex

!rIfe> 5 D lJ fLC. IE. +1 @: $1'3 C. i- ~ 17>1> H
These are Intel . format addresses with the least

significant 8 bits first and the most significant 8 bits
last.

The Power-On Monitor move routine, at E006 hex, may
. be used to simply "lower" all of the Partitions and make
room in the Top of RAM for I/O drivers or disk drivers. In
this case, the user would not have to alter any of the
Partition boundaries since this would already have been
accomplished by "RE-STARTING" the Development Pac.

It should be mentioned that the user must be careful
of moving any of the Partitions over Partition # 1 described
above. This Partition needs exactly 768 bytes below the
TOP-OF-Rru4 address given it in the program described above.
If any of the 768 bytes is altered, a loss of information or
possibly a complete loss of user control could result!

The user should also be careful of moving Partition
4. This is because DDT80, the Editor, and the Assembler
all have their data storage in this Partition. DDT80 uses
from 0100 to 0138 hex. The Editor and Assembler have
overlapping data areas starting at 0139 hex and working

DEVELOPMENT PAC APPENDIX B PAGE 70

upward. The Editor uses from 0139 to 0183 hex and the
Assembler uses from 0139 to 0255 hex. The Assembler also
starts its· symbol table at 0256 hex and "grows" upward.
These values and data areas are NOT changable! - They are
ingrained in the Development Pac to start at 0100 hex. The
TOP part of Partition # 4 can be moved up or down to
increase or decrease the size of the Assembler's symbol
table, but the BOTTOM address (0100 hex) of Partition # 4
CANNOT be altered! The user should be extremely careful not
to move the TOP of Partition # 4 below 0258 hex. In fact,
the user should always allow about 40 or 50 bytes above 0258
hex for at least a small symbol table.

Partition # 2 and Partition # 3 do not have the
restrictions of the other Partitions. They can be moved
freely by the user to almost any RAM location. The
Partitions will not function properly however if moved into
ROM areas or into non-existent addresses. The only other
restriction in moving Partitions # 2 and # 3 is to be
careful of moving them over Partition # 1 or over Partition
4.

As a general rule, the user should be extremely
careful when mov~ng or shifting the Partitions. It is much
easier to change the size of the Partitions than to move
them to another location. The user should always
"experiment" with a small test program after adjusting the
Partitions to verify that they work in their new locations.

This feature, Repartitioning RAM, is mentioned here
to inform the user of this capability. It is not necessary
to move any of the. Partitions when . doing "normal"
development with the Development Pac. However, this feature
is very valuable to the advanced Development Pac user.

DEVELOPMENT PAC APPENDIX C PAGE 71

APPENDIX C

MNEMONICS RECOGNIZED BY DDT80

================ DEVELOPMENT PAC MNEMONICS =================
MNEMONIC ADDRESS DATA AT ADDRESS

:PC
:A
:F
:I
:IF
:B
:c
:D
:E
:H
:L
:A I
:F I
:B'
: C'
:D'
:E'
: H'
:L'
:IX
:IY
:SP
:CI
:CO
:OI
:00
:SI
:SO
:SK
:SV
:11
:I2
:01
:02
:CE
:AI
:AO
:BI
:BO
:AS
:ED
:ER

0118
0117
0116
0115
0114
0113
0112
0111
0110
010F
010E
010D
010C
010B
010A
0109
0108
0107
0106
0104
0102
0100
F01E
F020
F022
F024
F026 ")
-FF28~ f

C547
C54E
CS9B
CS9D
CS57
C559
C552
CSF5
C60A
C61F
C624
CD9B
CAA9
CABO

User's Program Counter'
A Register
Flag Register
Interrupt Register
IFF Register
B Register
C Register
D Register
E Register
H Register
L Register
A' Register
Flag' Register
B' Register
C I Register
D' Register
E' Register
HI Register
L' Register
IX Register
IY Register
Stack Pointer

Console Input Vector
Console Output Vector
Object Input Vector
Object Output Vector

'<; Source Input Vector
Source Output Vector
Sorcerer Keyboard Driver
Sorcerer Video Driver
Input from Tape Unit # 1
Input from Tape Unit # 2
Output to Tape Unit # 1
Output to Tape Unit # 2
Sorcerer Centronics Driver
"A" Buffer Input (Object)
"A" Buffer Output (Object)
Dummy Driver (ETX Chars.)
"B" Buffer Output (Source)
Assembler start address
Editor start address
Editor reentry address

==
ti f/J <'P.3' flJi/Jf\.J i rO(L j WtQfLNJ

Pi1c co,-,p S T~
if Jw~. /(

DEVELOPMENT PAC APPENDIX D PAGE 72

APPENDIX D

ASSEMBLER ERRORS

Each of the' Errors described below is in summarized form.
The complete definition and probable causes of each error
can be found in the Assembler section of the manual under
"ASSEMBLER ERRORS".

ERROR

B
D
E
F
I
L
M
N
o
R
S
U
V

DEFINITION

Bad operator, Trailing operator
Digit of wrong base in operand, Invalid character
External Global symbol misused in expression
Full Symbol Table
Invalid operand or expression for opcode
Label error, Invalid character in label or symbol
Multiply defined label or symbol
No label appears where one is expected
Opcode invalid .
Range error in expression evaluation, Out of Range
Syntax error, Unbalanced parenthesis or quotes
Undefined symbol
Overflow in expression evaluation

Except for the "F" error, these errors will appear
as a one letter symbol in the right-most column of the
listings produced by the Assembler. The "F" error' generates
an "ABORT F" on the console output. The Assembler will also
count each error and print the total number of errors (From
0000 to 9999) for each assembly.

DEVELOPMENT PAC APPENDIX E PAGE 73

APPENDIX E

LOADER ERRORS

Each of the Errors described below is in summarized form.
The complete definition, cause and correction for each error
can be found in the Loader section of the manual under
"LOADER ERRORS".

ERROR

1
2
3
4

DEFINITION

Checksum Error
Double Definition of Global
Symbol Table being Overwritten
Symbol Table Full

RETURN

LOADER
LOADER
DDT80
DDT80

The Loader will flag each error by displaying:

****ERROR X

The "X" is one of the numbers listed above. Errors 3 and 4
are "fatal" errors and will end the loading session. Errors
1 and 2 are "non-fatal" errors and can usually be recovered
from. Some additional information is output for error 1. For
a full description of this type of error the section "LOADER

" ERRORS" should be read.

DEVELOPl.fENT PAC, APPENDIX F PAGE 74

APPENDIX F

SUMMARIZED COMMANDS OF THE DEVELOPMENT PAC

DOTeD

====================== DDT8D COMMANDS: ~--

M - Memory display/modify command
R - Register display/modify command
E Execute program command
H - Hexadecimal arithemetic command
L - Loader transfer command

==

. EDITOR

===================== EDITOR COMMANDS.: =====================
B - Point to the Beginning of text

n<CR> - Move line pointern.lines and display
I - Insert source lines

nO - Delete n source lines
nT - Type.n source lines on console display
nR - Read n source lines into the buffer
nW - Write out nsource lines from the buffer

E - Exit from Editor and close file

==

LOADER

===================== LOADER COMMANDS: =====================
.L XXXX,YYYY

*L
* >pp

Code at XXXX - Symbol Table at yyyy

Load next Object Module
End Loading Session
Reenter DOTeD from Power-On Monitor

==

DEVELOPMENT PAC APPENDIX G PAGE 75

APPENDIX G

ACKNOWLEDGEMENTS

A great deal of effort and cooperation went into the
Development Pac. We at Exidy would like to acknowledge the
efforts of the individuals responsible for creating the
package and documentation.

F'ROM MOSTEK INC.

FROM EXIDY INC.

CODING

Dave Leitch
Dan Hammond
P. Formaniak
John Bates

John K. Borders Jr.
Janice E. Cheng
Jan A. Neff

DOCUMENTATION

FROM EXIDY INC.
John K. Borders Jr.
Jan A. Neff
Janice E. Cheng

DEVELOPMENT PAC INDEX

INDEX

A

:A - Register A ••••••••••••••••••••••••••
:A' - Register A' ••••••••••••••••••••••••
Absolute Module ••••••••••••••••••••••••••
AcknowledgeIllents •••••••••••••••••••••••••
:AI - "A" Buffer Input •••••••••••••••••••
:AO - "A" Buffer Output ••••••••• • ••••
A Ram Buffer •••••••••••••••••••• • ••••
:AS - AsseIllbler mnemonic •••••••••••••••••
AsseIllbler ••••••••••••••••••••••••••••••••
Assembler I/O .

B

:B - B Register ••••••••••••••••••••••••••
:B' - B' Register •••••••••••••••••••
B Command (Editor) •••••••••••••••••• . . .
B Error (Assembler) ••••••••••••••••••••••
:BI - Dummy Driver •••••••••••••••••••••••
Binary Constants .
:BO - "B" Buffer Output ••••••••••••••••••
B Ram Buffer
Breakpoints

C

:C - C Register ••••••••••••••••••••••••••
:C' - C' Register ••••••••••••••••••••••••
Calling the Assembler ••••••••••••••••••••
Calling the Editor •••••••••••••••••••••••
Calling the Loader •••••••••••••••••••••••
Cassette Buffers •••••••••••••••••••••••••
Cassette Files •••••••••••••••••••••••••••
Cassette Mode of Operation •••••••••••••••
:CE - Centronics Printer Driver ••••••••••
Checksum Error (Loader) ••••••••••••••••••
:CI Console Input Vector Channel •••••
Close Device Flag ••••••••••••••••• • ••••
:CO - Console Output Vector Channel ••••••

PAGE 76

PAGE 11,48,71
11,48,71
42,52
75
2,17,26
2,17,26
24,26,59
71
4,41
55

PAGE 11,48,71
11,48,71
34
57
2,17,26
49
2,17,26
24,26,59
13

PAGE 11,48,71
11,48,71
56
33
16,62
21,24
21,22
31,55,61
2,17,23
63
2,3
18,19
2,3

DEVELOPMENT ,PAC INDEX

Coding ' •• ~ •• :e ••••••••••• ' ••••••• ' ••••• ' •••• ' ••
Conunands DDT 80 ••••••••••• ' ••••••••••••••

-' Editor ••••••••••••••••••••••••
- "Loa,der' ••••••••••••••••••••••••

Comments (Source Code Line) ••••••••••••••
Console Vector Channels ••••••••••••••••••
Constants ••••••••••••••••••••••••••••••••
Control Register (I/O Driver) ••••••••••••
CR Command (Editor) ••••••••••••••••••••••

D

:D ~ D Register ••••••••••••••• ~ ••••••••••
:D' - D' Register ••••••••••••••••••••••••
Data Record (Object File) ••••••••••••••••
Data Register (I/O Driver) •••••••••••••••
D Command (Editor) •••••••••••••••••••••••
DDT80 - Designer's Debugging Tool ••••••••
Decimal Constants ••••••••••••••••••••••••
DEFB Define Byte Pseudo-op •••••••••••••
DEFS - Define Storage Pseudo-op ••••••••••
DEFW - Define Word Pseudo-op •••••••••••••
D Error (Assembler) ••••••••••••••••••••••
Documentation ••••••••••••••••••••••••••••
Double Def ini tion Error (Load-er) •••••••••
Dual Device Select Flag (I/O Driver) •••••
Dummy Driver •••••••••••••••••••••••••••••

E

:E - E Register ••••••••• ~ ••••••••••• ~ ••••
:E' - E' Register ••••••••••••••••••••••••
E Command (DDT80) ••••••••••••••••••••••••
E Command (Editor) •••••••••••••••••••••••
:ED - Editor mnemonic ••••••••••••••••••••
Editing Example ••••••••••••••••••••••••••
Editor ••••••••••••••••••••••••••••••••• ~.
Editor I/O •••••••••••••••••••••••••••••••
E Error (Assembler) ••••••••••••••••••••••
END A (Partition Marker) •••••••••••••••••
ENDB (Partition Marker) •••••••••••••••••
END C (P'arti tion Marker) •••••••••••••••••
End of File Marker •••••••••••••••••• -•••••
End. of File Record •••••••••••••••••••••••
EQU - Equate Pseudo-op •••••••••••••••••••
:ER - Editor Reentry mneumonic •••••••••••
Errors (Assembler) •••••••••••••••••••••
Errors
Errors
Es,cape

(Editor) ••••••••••••••••••••••••
. ',(Load'er) ••• '. e' •••••••••• ' •••• ' •••••

Character •••••••••••••••••••••••••

75
7
27,34
62
51
2,3
49
18,19
34

PAGE 77

PAGE 11,48,71
11,48,71
65
18,19
35
4,7
49
47
47
47
57
75
63
18,19
26,31

PAGE 11,48,71
11,48,71
13
37
71
38
4,27
31
57
24,25,59
24,25,59
24,25,59
31,37,42
65
47
71
57
28
63
35

DEVELOPMENT PAC INDEX

ETX Character ••••••••••••••••••••••••••••
Expressions (Source Code) ••••••••••••••••
External Syntbols •••••••••••••••••••••••••
External Syntbol Record •••••••••••••••••••

F

:F - Flag Register •••••••••••••••••••••••
:F' - Flag' Register •••••••••••••••••••••
F Error (Assembler) ••••••••••••••••••••••
First Form (DDT80 "M" Command) •••••••••••
Flag Register ••••••••••••••••••••••••••••

G

GLOBAL - Global Pseudo-op ••••••••••••••••
Global Symbols •••••••••••••••••••••••••••
Global Symbol Table (Loader) •••••••••••••

H

:H - H Register ••••••••••••••••••••••••••
:H' - H' Register ••••••••••••••••••••••••
H Command (DDT8 0) ••••••••••••••••••••••••
Hex Arithmetic •••••••••••••••••••••••••••
Hex Constant (Source Code) •••••••••••••••

I

:1 - Interrupt Register ••••••••••••••••••
:11 - Cassette Input from unit # 1 •••••••
:12 - Cassette Input from Unit # 2 •••••••
I Command (Editor) •••••••••••••••••••••••
I Error (Assembler) ••••••••••••••••••••••
:IF - Interrupt Register •••••••••••••••••
Immediate Return Flag (I/O Driver) •••••••
Internal Syntbols •••••••••••••••••••••••••
Internal Syntbol Record •••••••••••••••••••
Interrupts •••••••••••••••••••••••••••••••
Introduction •••••••••••••••••••••••••••••
I/O Drivers ••••••••••••••••••••••••••••••
I/O Drivers (Writing Drivers) ••••••••••••
I/O Vectors ••••••••••••••••••••••••••••••
:IX IX Index Register ••••••••••••••••••
:IY - IY Index Register ••••••••••••••••••

PAGE 78

31,37,42
49
43,50
66

PAGE 12,48,71
12.48,71
57
8
11 , 71

PAGE 42,46,47
42,53
16,60,63

PAGE 11,48,71
11,48,71
15
15
49

PAGE 12,48,71
2,17,21
2,17,22
35
57
12,48,71
18,19
43
65
12
1
2,5,21
18
2,3
12,48,71
12,48,71

DEVELOPMENT PAC INDEX

K

Keywords .
L

:L - L Register ••••••••••••••••••••••••••
: L' L' Register •• ·
Labels •••••••••••••••
L Command (DDT80) ••••••
L Error (Assembler) ••••••••••••••••••••••
Line Buffer (Editor)•...............
Line Pointer (Editor) ••••••••••••••••
Linker •••••••••••••••
Link List •••••••••• ·
Listing (Assembler)
Loader •••••••••••••
Loader I/O ••••••••
Loader Symbol Table

· · · · ·
Local Symbols .

M

M Command (DDT80) ••••••••••••••••••••••••
M Error (Assembler) ·
Mnemonics •••••••••• ·
Module Definition Record (Object File) •••
Modules •••••••••••••••••••••• 0 ••••••••••••

M Command Secondary Commands (DDT80) •••••
" "•..•.
"A" •••••••••••••••••• • • • •••
"<CR> " ••••••••••• ' •••••••••
"HEX" •••••••••••• • ••••

N

N Error (Assembler) ~
o

:01 - Cassette Output to unit # 1
2
.

:02 - Cassette
Object Buffer

Output to unit # .
Object Output •••••••••••••
Object Vector Channels •••••••••••••••••••
Octal Constants .
o Error (Assembler) ·

PAGE 79

PAGE 46,48

PAGE 11,48,71
11,48,71
45
16
57
28,30
28,30
58
44
55
5,58
61
60
42

PAGE 7,\8
57
9,10,71
66
2,4,42
8
8
9
8
8,9

PAGE 57

PAGE 2,17,22
2,17,22
25,26
64
2,3
49
57

DEVELOPMENT PAC INDEX

Offset (Loader) •••••••••••••••••••••
:OI - Object Input Vector Channel
:00 - Object Output Vector Channel
Opcodes ••••••••••••••••••••••
Open Device Flag (I/O Driver)
Operands ••••••••••••
Operators (Assembler)

(DDT80)
ORG - Origin Pseudo-op
Overwrite Symbol Table Error

Partition # 1
2
3
4

(Loader)

P

.

. . .

. . .

:PC - Program Counter ••••
Position Independent Programs
Power-On Monitor •••••••••••
Program Counter (Assembler)
Prompt (Editor)

(DDT80)
(Loader)

(DDT80)

(Power-On Monitor)
PSECT - Program Sectioning Pseudo-op . . .
Pseudo-ops ••••••••••••••••••••••••••••

R

RAM - (Assembler)
,(DDT8 0) •••••
(Editor) •••

.
(Loader)

Ram Buffers
Ram Mode of Operation
R Command (DDT80)

(Editor) •••••
Register Headings
Relative Offset ••••
Relocatable Module •••••••••
Relocating Information Record
R Error (Assembler) •••••
RESTART 7 •••••••••••••••
Rewinding Cassette Files

. ~
(Object File)

PAGE 80

42,43,44
2,3
2,3
46
18,19
48
49
15
44,46,47,59
63

PAGE 24

PAGE

24
25
25
11,71
43
24,62,67
49
1 1
33,38
7
62
62
43,46,47,52
46

25
25
25
16,25
24
31,56,61
7,11
36
1 1
42,43,44
42,52
66
57
13
21

DEVELOPMENT PAC INDEX

Second Form (DDT80 "M" Command) ••••••••••
Serial Data Cable ••••••••••••••••••••••••
S Error (Assembler) ••••••••••••••••••••••
:SI - Source Input Vector Channel ••••••••
Sign-On ••••••••••.••••••••••••••••••••••••
:SK - Sorcerer Keyboard mnemonic •••••••••
:SO - Source Output Vector Channel •••••••
Sorcerer I/O •••••••••••••••••••••••••••••
Source Buf f.er ••••••••••••••••••••••••••••
Source Vector Channels •••••••••••••••••••
:SP - Stack Pointer ••••••••••••••••••••••
:SV - Sorcerer Video Driver mnemonic •••••
Symbols .
Symbol Table Full Error (Loader) •••••••••
Syntax - Assembly Language •••••••••••••••

T

TAB-SKIP Key .
Tab Stops ••••••••••••••••••••••••••••••••
T Command (Editor) •••••••••••••••••••••••
Text Buffer (Expansion) ••••••••••••••••••
Text Buffer (Size) ••••••••••• ~ •••••••••••
Third Form (DDT80 "M" Command) •••••••••••
Two Pass Assemblers ••••••••••••••••••••••

u

U Error (Assembler) .
V

Vector Channels ••••••••••••••••••••••••••
V Error (Assembler) ••••••••••••••••••••••

w
W Command (Editor) .

Z
Zilog Publications .

PAGE 81

PAGE 9
21
57
2,3
7,38
2,17,21
2,3
17
24,28
2,3
12, 71
2,17,21
42
63
45

PAGE 30,45
30
36
24,28
24,28
9
43

PAGE 57

PAGE 2,3
57

PAGE 36

PAGE 46

CL

GO

or
00

SI

S O·

"b2k

'''' EM-To (>

~~'1)C

~!VI) 11
~. 1f:.'lF }c.., -"''1#
~/Flt;;.#~.J .

@
BI <) so

Tf1f - --0

01'3,
~ iDe

.

So· ~

-..,

N-1"

U}

r JJ.f
,

....
Mf3M ~g7 ODCO

¥: A (J-f fJ., (f' ",7) ~~ f~ J ~ t 59

'/. i""'. (rr- (-I) 7"
[_) p \) F~r~ :~'J (flF() ,

b f

P1) r~o
'/0 ~~! g 1~ I f-&eK

, 13 I JY\ ~ld g 1""
(~~~)

~o]

lV () L/ lu-rL,{

1:0 SCl."'C' So<:~(,cc('

>DU 100 tFF

ADDR () 1 2 3 4 5 6

0100:: ~5:3 2F 00 00 00 00 00
0110:: 00 00 00 00 00 00 00
0120: EO 00 00 00 00 01 on
o l ~50: 00 00 :::;;F 2F ,IF 5gJ FF
0140: 45 on 5A 5A 5A OD OA
0150:: OA FF FF FF FF FF FF
0:1.60:: FF FF FF FF FF FF FF
0170: FF FF FF FF FF FF FF
Ol80: 80 5E FF BC 00 00 00
0190: 00 00 00 00 00 00 00
01AO:: 00 00 00 00 00 00 00
01BO: 00 00 00 00 00 00 00
OlCO: FF FF FF FF FF FF FF
01DO: FF FF FF FF FF FF FF
OlEO:: FF FF FF FF FF FF FF
01FO: FF FF FF FF FF FF FF

>DU 5E70 7

E~!ROR - INVALID COI'1MAND
>DU 5E70 ~5ECF

~() U (Lc- E. PI
ADDF:;~ 0 :L 2 :3 4 5 6

5E70: FF FF FF FF FF FF FF
!:'E80: 41 41 41 41 41 41 41
5E90: OA 42 42 42 42 42 42
5E?'O: on OA 43 43 43 43 4~5

5EBO: 43 OD OA 5A 5A 5A 5A
!73ECO: FF FF FF FF FF FF FF

}SE D=V
P,AAAAAAAA/·'AAAAA f 5P-1J r\..C BBBBBBBBBBBBBBB
·CCCCCCCCCCCCCCC
zzzzz

7 8 9

00 00 00
00 03 EO
45 2A FO
BC 80 CO
43 43 43
FF FF FF
FF FF FF
FF FF FF
00 00 00
00 00 00
00 00 00
00 00 00
FF FF FF
FF FF FF
FF FF FF
FF FF FF

:9'y->~

{~ B

00 00
00 00
1D C1
42 01
43 43
FF FF
FF FF
FF FF
00 00
00 00
00 00
00 00
FF FF
FF FF
FF FF
FF FF

5 () tJ. rL-C-~.!? / L. B:..

--)' 7 A-fL 7 1+ bfJf\.£.-s5 It T ¢ 13 ftf
(~:t:~ tPtp .>0 d;d:'-~~

fill D ~f) f) ILC-SS I!t T <fJ 13 C Ii
~. JJhl r go~

C D E F

00 00 00 00
00 00 00 03
00 00 00 00

[BA I:::'El-"F ' 0_", BC
43 43 43 OD
FF FF FF FF
FF FF FF FF
FF FF FF FF
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
FF FF FF FF
FF FF FF FF
FF FF FF FF
FF FF FF FF

LE- I AI fl- A--~

7 8 9 A B C D E F

FF FF FF FF FF FF FF FF 1ft)
41 41 41 41 41 41 41 41 0
42 42 4':. 42 42 42 42 42 4'" -'.

43 4~:; 4~5 43 43 43 43 43 43
5A OD OA f§§j 00 00 00 00 00
FF FF FF FF FF FF FF FF FF

e PI L.-,C --

P f2N T.1
So

& () AtP 1&/11/ 7

	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84

